Metamath Proof Explorer


Theorem rlimi2

Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rlimi.1 φ z A B V
rlimi.2 φ R +
rlimi.3 φ z A B C
rlimi.4 φ D
Assertion rlimi2 φ y D +∞ z A y z B C < R

Proof

Step Hyp Ref Expression
1 rlimi.1 φ z A B V
2 rlimi.2 φ R +
3 rlimi.3 φ z A B C
4 rlimi.4 φ D
5 1 2 3 rlimi φ y z A y z B C < R
6 eqid z A B = z A B
7 6 fnmpt z A B V z A B Fn A
8 fndm z A B Fn A dom z A B = A
9 1 7 8 3syl φ dom z A B = A
10 rlimss z A B C dom z A B
11 3 10 syl φ dom z A B
12 9 11 eqsstrrd φ A
13 rexico A D y D +∞ z A y z B C < R y z A y z B C < R
14 12 4 13 syl2anc φ y D +∞ z A y z B C < R y z A y z B C < R
15 5 14 mpbird φ y D +∞ z A y z B C < R