Metamath Proof Explorer


Theorem rlimim

Description: Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1 φ k A B V
rlimabs.2 φ k A B C
Assertion rlimim φ k A B C

Proof

Step Hyp Ref Expression
1 rlimabs.1 φ k A B V
2 rlimabs.2 φ k A B C
3 1 2 rlimmptrcl φ k A B
4 rlimcl k A B C C
5 2 4 syl φ C
6 imf :
7 ax-resscn
8 fss : :
9 6 7 8 mp2an :
10 9 a1i φ :
11 imcn2 C x + y + z z C < y z C < x
12 5 11 sylan φ x + y + z z C < y z C < x
13 3 5 2 10 12 rlimcn1b φ k A B C