Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
rlimle
Next ⟩
rlimsqzlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlimle
Description:
Comparison of the limits of two sequences.
(Contributed by
Mario Carneiro
, 10-May-2016)
Ref
Expression
Hypotheses
rlimle.1
⊢
φ
→
sup
A
ℝ
*
<
=
+∞
rlimle.2
⊢
φ
→
x
∈
A
⟼
B
⇝
ℝ
D
rlimle.3
⊢
φ
→
x
∈
A
⟼
C
⇝
ℝ
E
rlimle.4
⊢
φ
∧
x
∈
A
→
B
∈
ℝ
rlimle.5
⊢
φ
∧
x
∈
A
→
C
∈
ℝ
rlimle.6
⊢
φ
∧
x
∈
A
→
B
≤
C
Assertion
rlimle
⊢
φ
→
D
≤
E
Proof
Step
Hyp
Ref
Expression
1
rlimle.1
⊢
φ
→
sup
A
ℝ
*
<
=
+∞
2
rlimle.2
⊢
φ
→
x
∈
A
⟼
B
⇝
ℝ
D
3
rlimle.3
⊢
φ
→
x
∈
A
⟼
C
⇝
ℝ
E
4
rlimle.4
⊢
φ
∧
x
∈
A
→
B
∈
ℝ
5
rlimle.5
⊢
φ
∧
x
∈
A
→
C
∈
ℝ
6
rlimle.6
⊢
φ
∧
x
∈
A
→
B
≤
C
7
5
4
3
2
rlimsub
⊢
φ
→
x
∈
A
⟼
C
−
B
⇝
ℝ
E
−
D
8
5
4
resubcld
⊢
φ
∧
x
∈
A
→
C
−
B
∈
ℝ
9
5
4
subge0d
⊢
φ
∧
x
∈
A
→
0
≤
C
−
B
↔
B
≤
C
10
6
9
mpbird
⊢
φ
∧
x
∈
A
→
0
≤
C
−
B
11
1
7
8
10
rlimge0
⊢
φ
→
0
≤
E
−
D
12
1
3
5
rlimrecl
⊢
φ
→
E
∈
ℝ
13
1
2
4
rlimrecl
⊢
φ
→
D
∈
ℝ
14
12
13
subge0d
⊢
φ
→
0
≤
E
−
D
↔
D
≤
E
15
11
14
mpbid
⊢
φ
→
D
≤
E