Metamath Proof Explorer


Theorem rlimle

Description: Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimle.1 φ sup A * < = +∞
rlimle.2 φ x A B D
rlimle.3 φ x A C E
rlimle.4 φ x A B
rlimle.5 φ x A C
rlimle.6 φ x A B C
Assertion rlimle φ D E

Proof

Step Hyp Ref Expression
1 rlimle.1 φ sup A * < = +∞
2 rlimle.2 φ x A B D
3 rlimle.3 φ x A C E
4 rlimle.4 φ x A B
5 rlimle.5 φ x A C
6 rlimle.6 φ x A B C
7 5 4 3 2 rlimsub φ x A C B E D
8 5 4 resubcld φ x A C B
9 5 4 subge0d φ x A 0 C B B C
10 6 9 mpbird φ x A 0 C B
11 1 7 8 10 rlimge0 φ 0 E D
12 1 3 5 rlimrecl φ E
13 1 2 4 rlimrecl φ D
14 12 13 subge0d φ 0 E D D E
15 11 14 mpbid φ D E