Metamath Proof Explorer


Theorem rlimmptrcl

Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1 φ k A B V
rlimabs.2 φ k A B C
Assertion rlimmptrcl φ k A B

Proof

Step Hyp Ref Expression
1 rlimabs.1 φ k A B V
2 rlimabs.2 φ k A B C
3 rlimf k A B C k A B : dom k A B
4 2 3 syl φ k A B : dom k A B
5 eqid k A B = k A B
6 5 1 dmmptd φ dom k A B = A
7 6 feq2d φ k A B : dom k A B k A B : A
8 4 7 mpbid φ k A B : A
9 8 fvmptelrn φ k A B