Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
rlimmptrcl
Next ⟩
rlimabs
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlimmptrcl
Description:
Reverse closure for a real limit.
(Contributed by
Mario Carneiro
, 10-May-2016)
Ref
Expression
Hypotheses
rlimabs.1
⊢
φ
∧
k
∈
A
→
B
∈
V
rlimabs.2
⊢
φ
→
k
∈
A
⟼
B
⇝
ℝ
C
Assertion
rlimmptrcl
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
rlimabs.1
⊢
φ
∧
k
∈
A
→
B
∈
V
2
rlimabs.2
⊢
φ
→
k
∈
A
⟼
B
⇝
ℝ
C
3
rlimf
⊢
k
∈
A
⟼
B
⇝
ℝ
C
→
k
∈
A
⟼
B
:
dom
⁡
k
∈
A
⟼
B
⟶
ℂ
4
2
3
syl
⊢
φ
→
k
∈
A
⟼
B
:
dom
⁡
k
∈
A
⟼
B
⟶
ℂ
5
eqid
⊢
k
∈
A
⟼
B
=
k
∈
A
⟼
B
6
5
1
dmmptd
⊢
φ
→
dom
⁡
k
∈
A
⟼
B
=
A
7
6
feq2d
⊢
φ
→
k
∈
A
⟼
B
:
dom
⁡
k
∈
A
⟼
B
⟶
ℂ
↔
k
∈
A
⟼
B
:
A
⟶
ℂ
8
4
7
mpbid
⊢
φ
→
k
∈
A
⟼
B
:
A
⟶
ℂ
9
8
fvmptelrn
⊢
φ
∧
k
∈
A
→
B
∈
ℂ