Metamath Proof Explorer


Theorem rlimmul

Description: Limit of the product of two converging functions. Proposition 12-2.1(c) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses rlimadd.3 φ x A B V
rlimadd.4 φ x A C V
rlimadd.5 φ x A B D
rlimadd.6 φ x A C E
Assertion rlimmul φ x A B C D E

Proof

Step Hyp Ref Expression
1 rlimadd.3 φ x A B V
2 rlimadd.4 φ x A C V
3 rlimadd.5 φ x A B D
4 rlimadd.6 φ x A C E
5 1 3 rlimmptrcl φ x A B
6 2 4 rlimmptrcl φ x A C
7 5 6 mulcld φ x A B C
8 rlimcl x A B D D
9 3 8 syl φ D
10 rlimcl x A C E E
11 4 10 syl φ E
12 9 11 mulcld φ D E
13 simpr φ y + y +
14 9 adantr φ y + D
15 11 adantr φ y + E
16 mulcn2 y + D E z + w + u v u D < z v E < w u v D E < y
17 13 14 15 16 syl3anc φ y + z + w + u v u D < z v E < w u v D E < y
18 5 6 7 12 3 4 17 rlimcn3 φ x A B C D E