Metamath Proof Explorer


Theorem rlimneg

Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses rlimneg.1 φ k A B V
rlimneg.2 φ k A B C
Assertion rlimneg φ k A B C

Proof

Step Hyp Ref Expression
1 rlimneg.1 φ k A B V
2 rlimneg.2 φ k A B C
3 0cnd φ k A 0
4 1 2 rlimmptrcl φ k A B
5 1 ralrimiva φ k A B V
6 dmmptg k A B V dom k A B = A
7 5 6 syl φ dom k A B = A
8 rlimss k A B C dom k A B
9 2 8 syl φ dom k A B
10 7 9 eqsstrrd φ A
11 0cn 0
12 rlimconst A 0 k A 0 0
13 10 11 12 sylancl φ k A 0 0
14 3 4 13 2 rlimsub φ k A 0 B 0 C
15 df-neg B = 0 B
16 15 mpteq2i k A B = k A 0 B
17 df-neg C = 0 C
18 14 16 17 3brtr4g φ k A B C