Metamath Proof Explorer


Theorem rlimpm

Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion rlimpm F A F 𝑝𝑚

Proof

Step Hyp Ref Expression
1 df-rlim = f x | f 𝑝𝑚 x y + z w dom f z w f w x < y
2 opabssxp f x | f 𝑝𝑚 x y + z w dom f z w f w x < y 𝑝𝑚 ×
3 1 2 eqsstri 𝑝𝑚 ×
4 dmss 𝑝𝑚 × dom dom 𝑝𝑚 ×
5 3 4 ax-mp dom dom 𝑝𝑚 ×
6 dmxpss dom 𝑝𝑚 × 𝑝𝑚
7 5 6 sstri dom 𝑝𝑚
8 rlimrel Rel
9 8 releldmi F A F dom
10 7 9 sselid F A F 𝑝𝑚