| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimcld2.1 |
|
| 2 |
|
rlimcld2.2 |
|
| 3 |
|
rlimrecl.3 |
|
| 4 |
|
ax-resscn |
|
| 5 |
4
|
a1i |
|
| 6 |
|
eldifi |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
imcld |
|
| 9 |
8
|
recnd |
|
| 10 |
|
eldifn |
|
| 11 |
10
|
adantl |
|
| 12 |
|
reim0b |
|
| 13 |
7 12
|
syl |
|
| 14 |
13
|
necon3bbid |
|
| 15 |
11 14
|
mpbid |
|
| 16 |
9 15
|
absrpcld |
|
| 17 |
7
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
18
|
recnd |
|
| 20 |
17 19
|
subcld |
|
| 21 |
|
absimle |
|
| 22 |
20 21
|
syl |
|
| 23 |
17 19
|
imsubd |
|
| 24 |
|
reim0 |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
oveq2d |
|
| 27 |
9
|
adantr |
|
| 28 |
27
|
subid1d |
|
| 29 |
23 26 28
|
3eqtrrd |
|
| 30 |
29
|
fveq2d |
|
| 31 |
19 17
|
abssubd |
|
| 32 |
22 30 31
|
3brtr4d |
|
| 33 |
1 2 5 16 32 3
|
rlimcld2 |
|