Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcld2.1 |
|
2 |
|
rlimcld2.2 |
|
3 |
|
rlimrecl.3 |
|
4 |
|
ax-resscn |
|
5 |
4
|
a1i |
|
6 |
|
eldifi |
|
7 |
6
|
adantl |
|
8 |
7
|
imcld |
|
9 |
8
|
recnd |
|
10 |
|
eldifn |
|
11 |
10
|
adantl |
|
12 |
|
reim0b |
|
13 |
7 12
|
syl |
|
14 |
13
|
necon3bbid |
|
15 |
11 14
|
mpbid |
|
16 |
9 15
|
absrpcld |
|
17 |
7
|
adantr |
|
18 |
|
simpr |
|
19 |
18
|
recnd |
|
20 |
17 19
|
subcld |
|
21 |
|
absimle |
|
22 |
20 21
|
syl |
|
23 |
17 19
|
imsubd |
|
24 |
|
reim0 |
|
25 |
24
|
adantl |
|
26 |
25
|
oveq2d |
|
27 |
9
|
adantr |
|
28 |
27
|
subid1d |
|
29 |
23 26 28
|
3eqtrrd |
|
30 |
29
|
fveq2d |
|
31 |
19 17
|
abssubd |
|
32 |
22 30 31
|
3brtr4d |
|
33 |
1 2 5 16 32 3
|
rlimcld2 |
|