Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
rlimrel
Next ⟩
clim
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlimrel
Description:
The limit relation is a relation.
(Contributed by
Mario Carneiro
, 24-Sep-2014)
Ref
Expression
Assertion
rlimrel
⊢
Rel
⁡
⇝
ℝ
Proof
Step
Hyp
Ref
Expression
1
df-rlim
⊢
⇝
ℝ
=
f
x
|
f
∈
ℂ
↑
𝑝𝑚
ℝ
∧
x
∈
ℂ
∧
∀
y
∈
ℝ
+
∃
z
∈
ℝ
∀
w
∈
dom
⁡
f
z
≤
w
→
f
⁡
w
−
x
<
y
2
1
relopabiv
⊢
Rel
⁡
⇝
ℝ