Metamath Proof Explorer


Theorem rlimres2

Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimres2.1 φ A B
rlimres2.2 φ x B C D
Assertion rlimres2 φ x A C D

Proof

Step Hyp Ref Expression
1 rlimres2.1 φ A B
2 rlimres2.2 φ x B C D
3 1 resmptd φ x B C A = x A C
4 rlimres x B C D x B C A D
5 2 4 syl φ x B C A D
6 3 5 eqbrtrrd φ x A C D