Step |
Hyp |
Ref |
Expression |
1 |
|
rlimresb.1 |
|
2 |
|
rlimresb.2 |
|
3 |
|
rlimresb.3 |
|
4 |
|
rlimcl |
|
5 |
4
|
a1i |
|
6 |
|
rlimcl |
|
7 |
6
|
a1i |
|
8 |
2
|
adantr |
|
9 |
|
simprrl |
|
10 |
8 9
|
sseldd |
|
11 |
3
|
adantr |
|
12 |
|
elicopnf |
|
13 |
3 12
|
syl |
|
14 |
13
|
biimpa |
|
15 |
14
|
adantrr |
|
16 |
15
|
simpld |
|
17 |
15
|
simprd |
|
18 |
|
simprrr |
|
19 |
11 16 10 17 18
|
letrd |
|
20 |
|
elicopnf |
|
21 |
11 20
|
syl |
|
22 |
10 19 21
|
mpbir2and |
|
23 |
22
|
anassrs |
|
24 |
23
|
anassrs |
|
25 |
|
biimt |
|
26 |
24 25
|
syl |
|
27 |
26
|
pm5.74da |
|
28 |
|
bi2.04 |
|
29 |
27 28
|
bitrdi |
|
30 |
29
|
pm5.74da |
|
31 |
|
elin |
|
32 |
31
|
imbi1i |
|
33 |
|
impexp |
|
34 |
32 33
|
bitri |
|
35 |
30 34
|
bitr4di |
|
36 |
35
|
ralbidv2 |
|
37 |
36
|
rexbidva |
|
38 |
37
|
ralbidv |
|
39 |
38
|
adantr |
|
40 |
1
|
ffvelrnda |
|
41 |
40
|
ralrimiva |
|
42 |
41
|
adantr |
|
43 |
2
|
adantr |
|
44 |
|
simpr |
|
45 |
3
|
adantr |
|
46 |
42 43 44 45
|
rlim3 |
|
47 |
|
elinel1 |
|
48 |
47 40
|
sylan2 |
|
49 |
48
|
ralrimiva |
|
50 |
49
|
adantr |
|
51 |
|
inss1 |
|
52 |
51 2
|
sstrid |
|
53 |
52
|
adantr |
|
54 |
50 53 44 45
|
rlim3 |
|
55 |
39 46 54
|
3bitr4d |
|
56 |
55
|
ex |
|
57 |
5 7 56
|
pm5.21ndd |
|
58 |
1
|
feqmptd |
|
59 |
58
|
breq1d |
|
60 |
|
resres |
|
61 |
|
ffn |
|
62 |
|
fnresdm |
|
63 |
1 61 62
|
3syl |
|
64 |
63
|
reseq1d |
|
65 |
58
|
reseq1d |
|
66 |
|
resmpt |
|
67 |
51 66
|
ax-mp |
|
68 |
65 67
|
eqtrdi |
|
69 |
60 64 68
|
3eqtr3a |
|
70 |
69
|
breq1d |
|
71 |
57 59 70
|
3bitr4d |
|