Metamath Proof Explorer


Theorem rlimresb

Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimresb.1 φ F : A
rlimresb.2 φ A
rlimresb.3 φ B
Assertion rlimresb φ F C F B +∞ C

Proof

Step Hyp Ref Expression
1 rlimresb.1 φ F : A
2 rlimresb.2 φ A
3 rlimresb.3 φ B
4 rlimcl x A F x C C
5 4 a1i φ x A F x C C
6 rlimcl x A B +∞ F x C C
7 6 a1i φ x A B +∞ F x C C
8 2 adantr φ z B +∞ x A z x A
9 simprrl φ z B +∞ x A z x x A
10 8 9 sseldd φ z B +∞ x A z x x
11 3 adantr φ z B +∞ x A z x B
12 elicopnf B z B +∞ z B z
13 3 12 syl φ z B +∞ z B z
14 13 biimpa φ z B +∞ z B z
15 14 adantrr φ z B +∞ x A z x z B z
16 15 simpld φ z B +∞ x A z x z
17 15 simprd φ z B +∞ x A z x B z
18 simprrr φ z B +∞ x A z x z x
19 11 16 10 17 18 letrd φ z B +∞ x A z x B x
20 elicopnf B x B +∞ x B x
21 11 20 syl φ z B +∞ x A z x x B +∞ x B x
22 10 19 21 mpbir2and φ z B +∞ x A z x x B +∞
23 22 anassrs φ z B +∞ x A z x x B +∞
24 23 anassrs φ z B +∞ x A z x x B +∞
25 biimt x B +∞ F x C < y x B +∞ F x C < y
26 24 25 syl φ z B +∞ x A z x F x C < y x B +∞ F x C < y
27 26 pm5.74da φ z B +∞ x A z x F x C < y z x x B +∞ F x C < y
28 bi2.04 z x x B +∞ F x C < y x B +∞ z x F x C < y
29 27 28 bitrdi φ z B +∞ x A z x F x C < y x B +∞ z x F x C < y
30 29 pm5.74da φ z B +∞ x A z x F x C < y x A x B +∞ z x F x C < y
31 elin x A B +∞ x A x B +∞
32 31 imbi1i x A B +∞ z x F x C < y x A x B +∞ z x F x C < y
33 impexp x A x B +∞ z x F x C < y x A x B +∞ z x F x C < y
34 32 33 bitri x A B +∞ z x F x C < y x A x B +∞ z x F x C < y
35 30 34 bitr4di φ z B +∞ x A z x F x C < y x A B +∞ z x F x C < y
36 35 ralbidv2 φ z B +∞ x A z x F x C < y x A B +∞ z x F x C < y
37 36 rexbidva φ z B +∞ x A z x F x C < y z B +∞ x A B +∞ z x F x C < y
38 37 ralbidv φ y + z B +∞ x A z x F x C < y y + z B +∞ x A B +∞ z x F x C < y
39 38 adantr φ C y + z B +∞ x A z x F x C < y y + z B +∞ x A B +∞ z x F x C < y
40 1 ffvelrnda φ x A F x
41 40 ralrimiva φ x A F x
42 41 adantr φ C x A F x
43 2 adantr φ C A
44 simpr φ C C
45 3 adantr φ C B
46 42 43 44 45 rlim3 φ C x A F x C y + z B +∞ x A z x F x C < y
47 elinel1 x A B +∞ x A
48 47 40 sylan2 φ x A B +∞ F x
49 48 ralrimiva φ x A B +∞ F x
50 49 adantr φ C x A B +∞ F x
51 inss1 A B +∞ A
52 51 2 sstrid φ A B +∞
53 52 adantr φ C A B +∞
54 50 53 44 45 rlim3 φ C x A B +∞ F x C y + z B +∞ x A B +∞ z x F x C < y
55 39 46 54 3bitr4d φ C x A F x C x A B +∞ F x C
56 55 ex φ C x A F x C x A B +∞ F x C
57 5 7 56 pm5.21ndd φ x A F x C x A B +∞ F x C
58 1 feqmptd φ F = x A F x
59 58 breq1d φ F C x A F x C
60 resres F A B +∞ = F A B +∞
61 ffn F : A F Fn A
62 fnresdm F Fn A F A = F
63 1 61 62 3syl φ F A = F
64 63 reseq1d φ F A B +∞ = F B +∞
65 58 reseq1d φ F A B +∞ = x A F x A B +∞
66 resmpt A B +∞ A x A F x A B +∞ = x A B +∞ F x
67 51 66 ax-mp x A F x A B +∞ = x A B +∞ F x
68 65 67 eqtrdi φ F A B +∞ = x A B +∞ F x
69 60 64 68 3eqtr3a φ F B +∞ = x A B +∞ F x
70 69 breq1d φ F B +∞ C x A B +∞ F x C
71 57 59 70 3bitr4d φ F C F B +∞ C