Metamath Proof Explorer


Theorem rlimsqz

Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)

Ref Expression
Hypotheses rlimsqz.d φ D
rlimsqz.m φ M
rlimsqz.l φ x A B D
rlimsqz.b φ x A B
rlimsqz.c φ x A C
rlimsqz.1 φ x A M x B C
rlimsqz.2 φ x A M x C D
Assertion rlimsqz φ x A C D

Proof

Step Hyp Ref Expression
1 rlimsqz.d φ D
2 rlimsqz.m φ M
3 rlimsqz.l φ x A B D
4 rlimsqz.b φ x A B
5 rlimsqz.c φ x A C
6 rlimsqz.1 φ x A M x B C
7 rlimsqz.2 φ x A M x C D
8 1 recnd φ D
9 4 recnd φ x A B
10 5 recnd φ x A C
11 4 adantrr φ x A M x B
12 5 adantrr φ x A M x C
13 1 adantr φ x A M x D
14 11 12 13 6 lesub2dd φ x A M x D C D B
15 12 13 7 abssuble0d φ x A M x C D = D C
16 11 12 13 6 7 letrd φ x A M x B D
17 11 13 16 abssuble0d φ x A M x B D = D B
18 14 15 17 3brtr4d φ x A M x C D B D
19 2 8 3 9 10 18 rlimsqzlem φ x A C D