| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimsqzlem.m |
|
| 2 |
|
rlimsqzlem.e |
|
| 3 |
|
rlimsqzlem.1 |
|
| 4 |
|
rlimsqzlem.2 |
|
| 5 |
|
rlimsqzlem.3 |
|
| 6 |
|
rlimsqzlem.4 |
|
| 7 |
1
|
ad3antrrr |
|
| 8 |
1
|
ad2antrr |
|
| 9 |
|
elicopnf |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
simprbda |
|
| 12 |
11
|
adantrr |
|
| 13 |
|
eqid |
|
| 14 |
13 4
|
dmmptd |
|
| 15 |
|
rlimss |
|
| 16 |
3 15
|
syl |
|
| 17 |
14 16
|
eqsstrrd |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
sselda |
|
| 20 |
19
|
adantr |
|
| 21 |
10
|
simplbda |
|
| 22 |
21
|
adantrr |
|
| 23 |
|
simprr |
|
| 24 |
7 12 20 22 23
|
letrd |
|
| 25 |
6
|
anassrs |
|
| 26 |
25
|
adantllr |
|
| 27 |
24 26
|
syldan |
|
| 28 |
2
|
adantr |
|
| 29 |
5 28
|
subcld |
|
| 30 |
29
|
abscld |
|
| 31 |
30
|
ad4ant13 |
|
| 32 |
|
rlimcl |
|
| 33 |
3 32
|
syl |
|
| 34 |
33
|
adantr |
|
| 35 |
4 34
|
subcld |
|
| 36 |
35
|
abscld |
|
| 37 |
36
|
ad4ant13 |
|
| 38 |
|
rpre |
|
| 39 |
38
|
ad3antlr |
|
| 40 |
|
lelttr |
|
| 41 |
31 37 39 40
|
syl3anc |
|
| 42 |
27 41
|
mpand |
|
| 43 |
42
|
expr |
|
| 44 |
43
|
an32s |
|
| 45 |
44
|
a2d |
|
| 46 |
45
|
ralimdva |
|
| 47 |
46
|
reximdva |
|
| 48 |
47
|
ralimdva |
|
| 49 |
4
|
ralrimiva |
|
| 50 |
49 17 33 1
|
rlim3 |
|
| 51 |
5
|
ralrimiva |
|
| 52 |
51 17 2 1
|
rlim3 |
|
| 53 |
48 50 52
|
3imtr4d |
|
| 54 |
3 53
|
mpd |
|