Metamath Proof Explorer


Theorem rlimsqzlem

Description: Lemma for rlimsqz and rlimsqz2 . (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)

Ref Expression
Hypotheses rlimsqzlem.m φ M
rlimsqzlem.e φ E
rlimsqzlem.1 φ x A B D
rlimsqzlem.2 φ x A B
rlimsqzlem.3 φ x A C
rlimsqzlem.4 φ x A M x C E B D
Assertion rlimsqzlem φ x A C E

Proof

Step Hyp Ref Expression
1 rlimsqzlem.m φ M
2 rlimsqzlem.e φ E
3 rlimsqzlem.1 φ x A B D
4 rlimsqzlem.2 φ x A B
5 rlimsqzlem.3 φ x A C
6 rlimsqzlem.4 φ x A M x C E B D
7 1 ad3antrrr φ y + x A z M +∞ z x M
8 1 ad2antrr φ y + x A M
9 elicopnf M z M +∞ z M z
10 8 9 syl φ y + x A z M +∞ z M z
11 10 simprbda φ y + x A z M +∞ z
12 11 adantrr φ y + x A z M +∞ z x z
13 eqid x A B = x A B
14 13 4 dmmptd φ dom x A B = A
15 rlimss x A B D dom x A B
16 3 15 syl φ dom x A B
17 14 16 eqsstrrd φ A
18 17 adantr φ y + A
19 18 sselda φ y + x A x
20 19 adantr φ y + x A z M +∞ z x x
21 10 simplbda φ y + x A z M +∞ M z
22 21 adantrr φ y + x A z M +∞ z x M z
23 simprr φ y + x A z M +∞ z x z x
24 7 12 20 22 23 letrd φ y + x A z M +∞ z x M x
25 6 anassrs φ x A M x C E B D
26 25 adantllr φ y + x A M x C E B D
27 24 26 syldan φ y + x A z M +∞ z x C E B D
28 2 adantr φ x A E
29 5 28 subcld φ x A C E
30 29 abscld φ x A C E
31 30 ad4ant13 φ y + x A z M +∞ z x C E
32 rlimcl x A B D D
33 3 32 syl φ D
34 33 adantr φ x A D
35 4 34 subcld φ x A B D
36 35 abscld φ x A B D
37 36 ad4ant13 φ y + x A z M +∞ z x B D
38 rpre y + y
39 38 ad3antlr φ y + x A z M +∞ z x y
40 lelttr C E B D y C E B D B D < y C E < y
41 31 37 39 40 syl3anc φ y + x A z M +∞ z x C E B D B D < y C E < y
42 27 41 mpand φ y + x A z M +∞ z x B D < y C E < y
43 42 expr φ y + x A z M +∞ z x B D < y C E < y
44 43 an32s φ y + z M +∞ x A z x B D < y C E < y
45 44 a2d φ y + z M +∞ x A z x B D < y z x C E < y
46 45 ralimdva φ y + z M +∞ x A z x B D < y x A z x C E < y
47 46 reximdva φ y + z M +∞ x A z x B D < y z M +∞ x A z x C E < y
48 47 ralimdva φ y + z M +∞ x A z x B D < y y + z M +∞ x A z x C E < y
49 4 ralrimiva φ x A B
50 49 17 33 1 rlim3 φ x A B D y + z M +∞ x A z x B D < y
51 5 ralrimiva φ x A C
52 51 17 2 1 rlim3 φ x A C E y + z M +∞ x A z x C E < y
53 48 50 52 3imtr4d φ x A B D x A C E
54 3 53 mpd φ x A C E