Metamath Proof Explorer


Theorem rlimuni

Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses rlimuni.1 φ F : A
rlimuni.2 φ sup A * < = +∞
rlimuni.3 φ F B
rlimuni.4 φ F C
Assertion rlimuni φ B = C

Proof

Step Hyp Ref Expression
1 rlimuni.1 φ F : A
2 rlimuni.2 φ sup A * < = +∞
3 rlimuni.3 φ F B
4 rlimuni.4 φ F C
5 rlimcl F B B
6 3 5 syl φ B
7 6 ad2antrr φ j k A B
8 rlimcl F C C
9 4 8 syl φ C
10 9 ad2antrr φ j k A C
11 7 10 subcld φ j k A B C
12 11 abscld φ j k A B C
13 12 ltnrd φ j k A ¬ B C < B C
14 1 ffvelrnda φ k A F k
15 14 adantlr φ j k A F k
16 15 7 abssubd φ j k A F k B = B F k
17 16 breq1d φ j k A F k B < B C 2 B F k < B C 2
18 17 anbi1d φ j k A F k B < B C 2 F k C < B C 2 B F k < B C 2 F k C < B C 2
19 abs3lem B C F k B C B F k < B C 2 F k C < B C 2 B C < B C
20 7 10 15 12 19 syl22anc φ j k A B F k < B C 2 F k C < B C 2 B C < B C
21 18 20 sylbid φ j k A F k B < B C 2 F k C < B C 2 B C < B C
22 21 imim2d φ j k A j k F k B < B C 2 F k C < B C 2 j k B C < B C
23 22 impcomd φ j k A j k j k F k B < B C 2 F k C < B C 2 B C < B C
24 13 23 mtod φ j k A ¬ j k j k F k B < B C 2 F k C < B C 2
25 24 nrexdv φ j ¬ k A j k j k F k B < B C 2 F k C < B C 2
26 r19.29r k A j k k A j k F k B < B C 2 F k C < B C 2 k A j k j k F k B < B C 2 F k C < B C 2
27 25 26 nsyl φ j ¬ k A j k k A j k F k B < B C 2 F k C < B C 2
28 27 nrexdv φ ¬ j k A j k k A j k F k B < B C 2 F k C < B C 2
29 1 fdmd φ dom F = A
30 rlimss F B dom F
31 3 30 syl φ dom F
32 29 31 eqsstrrd φ A
33 ressxr *
34 32 33 sstrdi φ A *
35 supxrunb1 A * j k A j k sup A * < = +∞
36 34 35 syl φ j k A j k sup A * < = +∞
37 2 36 mpbird φ j k A j k
38 r19.29 j k A j k j k A j k F k B < B C 2 F k C < B C 2 j k A j k k A j k F k B < B C 2 F k C < B C 2
39 38 ex j k A j k j k A j k F k B < B C 2 F k C < B C 2 j k A j k k A j k F k B < B C 2 F k C < B C 2
40 37 39 syl φ j k A j k F k B < B C 2 F k C < B C 2 j k A j k k A j k F k B < B C 2 F k C < B C 2
41 28 40 mtod φ ¬ j k A j k F k B < B C 2 F k C < B C 2
42 1 adantr φ B C F : A
43 ffvelrn F : A k A F k
44 43 ralrimiva F : A k A F k
45 42 44 syl φ B C k A F k
46 6 adantr φ B C B
47 9 adantr φ B C C
48 46 47 subcld φ B C B C
49 simpr φ B C B C
50 46 47 49 subne0d φ B C B C 0
51 48 50 absrpcld φ B C B C +
52 51 rphalfcld φ B C B C 2 +
53 42 feqmptd φ B C F = k A F k
54 3 adantr φ B C F B
55 53 54 eqbrtrrd φ B C k A F k B
56 45 52 55 rlimi φ B C j k A j k F k B < B C 2
57 4 adantr φ B C F C
58 53 57 eqbrtrrd φ B C k A F k C
59 45 52 58 rlimi φ B C j k A j k F k C < B C 2
60 32 adantr φ B C A
61 rexanre A j k A j k F k B < B C 2 F k C < B C 2 j k A j k F k B < B C 2 j k A j k F k C < B C 2
62 60 61 syl φ B C j k A j k F k B < B C 2 F k C < B C 2 j k A j k F k B < B C 2 j k A j k F k C < B C 2
63 56 59 62 mpbir2and φ B C j k A j k F k B < B C 2 F k C < B C 2
64 63 ex φ B C j k A j k F k B < B C 2 F k C < B C 2
65 64 necon1bd φ ¬ j k A j k F k B < B C 2 F k C < B C 2 B = C
66 41 65 mpd φ B = C