Metamath Proof Explorer


Theorem rlm0

Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion rlm0 0 R = 0 ringLMod R

Proof

Step Hyp Ref Expression
1 rlmval ringLMod R = subringAlg R Base R
2 1 a1i ringLMod R = subringAlg R Base R
3 eqidd 0 R = 0 R
4 ssidd Base R Base R
5 2 3 4 sralmod0 0 R = 0 ringLMod R
6 5 mptru 0 R = 0 ringLMod R