Metamath Proof Explorer


Theorem rlmassa

Description: The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmassa R CRing ringLMod R AssAlg

Proof

Step Hyp Ref Expression
1 crngring R CRing R Ring
2 eqid Base R = Base R
3 2 subrgid R Ring Base R SubRing R
4 1 3 syl R CRing Base R SubRing R
5 rlmval ringLMod R = subringAlg R Base R
6 5 sraassa R CRing Base R SubRing R ringLMod R AssAlg
7 4 6 mpdan R CRing ringLMod R AssAlg