Metamath Proof Explorer


Theorem rlmbas

Description: Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion rlmbas Base R = Base ringLMod R

Proof

Step Hyp Ref Expression
1 rlmval ringLMod R = subringAlg R Base R
2 1 a1i ringLMod R = subringAlg R Base R
3 ssidd Base R Base R
4 2 3 srabase Base R = Base ringLMod R
5 4 mptru Base R = Base ringLMod R