Metamath Proof Explorer


Theorem rlmbn

Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion rlmbn R NrmRing R DivRing R CMetSp ringLMod R Ban

Proof

Step Hyp Ref Expression
1 simp3 R NrmRing R DivRing R CMetSp R CMetSp
2 cmsms R CMetSp R MetSp
3 mstps R MetSp R TopSp
4 1 2 3 3syl R NrmRing R DivRing R CMetSp R TopSp
5 eqid Base R = Base R
6 eqid TopOpen R = TopOpen R
7 5 6 tpsuni R TopSp Base R = TopOpen R
8 4 7 syl R NrmRing R DivRing R CMetSp Base R = TopOpen R
9 6 tpstop R TopSp TopOpen R Top
10 eqid TopOpen R = TopOpen R
11 10 topcld TopOpen R Top TopOpen R Clsd TopOpen R
12 4 9 11 3syl R NrmRing R DivRing R CMetSp TopOpen R Clsd TopOpen R
13 8 12 eqeltrd R NrmRing R DivRing R CMetSp Base R Clsd TopOpen R
14 5 ressid R NrmRing R 𝑠 Base R = R
15 14 3ad2ant1 R NrmRing R DivRing R CMetSp R 𝑠 Base R = R
16 simp2 R NrmRing R DivRing R CMetSp R DivRing
17 15 16 eqeltrd R NrmRing R DivRing R CMetSp R 𝑠 Base R DivRing
18 simp1 R NrmRing R DivRing R CMetSp R NrmRing
19 nrgring R NrmRing R Ring
20 19 3ad2ant1 R NrmRing R DivRing R CMetSp R Ring
21 5 subrgid R Ring Base R SubRing R
22 20 21 syl R NrmRing R DivRing R CMetSp Base R SubRing R
23 rlmval ringLMod R = subringAlg R Base R
24 23 6 srabn R NrmRing R CMetSp Base R SubRing R ringLMod R Ban Base R Clsd TopOpen R R 𝑠 Base R DivRing
25 18 1 22 24 syl3anc R NrmRing R DivRing R CMetSp ringLMod R Ban Base R Clsd TopOpen R R 𝑠 Base R DivRing
26 13 17 25 mpbir2and R NrmRing R DivRing R CMetSp ringLMod R Ban