Metamath Proof Explorer


Theorem rlmds

Description: Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmds distR=distringLModR

Proof

Step Hyp Ref Expression
1 rlmval ringLModR=subringAlgRBaseR
2 1 a1i ringLModR=subringAlgRBaseR
3 ssidd BaseRBaseR
4 2 3 srads distR=distringLModR
5 4 mptru distR=distringLModR