Metamath Proof Explorer


Theorem rlmlmod

Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmlmod R Ring ringLMod R LMod

Proof

Step Hyp Ref Expression
1 rlmval ringLMod R = subringAlg R Base R
2 eqid Base R = Base R
3 2 subrgid R Ring Base R SubRing R
4 eqid subringAlg R Base R = subringAlg R Base R
5 4 sralmod Base R SubRing R subringAlg R Base R LMod
6 3 5 syl R Ring subringAlg R Base R LMod
7 1 6 eqeltrid R Ring ringLMod R LMod