Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
rlmlmod
Next ⟩
rlmlvec
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmlmod
Description:
The ring module is a module.
(Contributed by
Stefan O'Rear
, 6-Dec-2014)
Ref
Expression
Assertion
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
rlmval
⊢
ringLMod
⁡
R
=
subringAlg
⁡
R
⁡
Base
R
2
eqid
⊢
Base
R
=
Base
R
3
2
subrgid
⊢
R
∈
Ring
→
Base
R
∈
SubRing
⁡
R
4
eqid
⊢
subringAlg
⁡
R
⁡
Base
R
=
subringAlg
⁡
R
⁡
Base
R
5
4
sralmod
⊢
Base
R
∈
SubRing
⁡
R
→
subringAlg
⁡
R
⁡
Base
R
∈
LMod
6
3
5
syl
⊢
R
∈
Ring
→
subringAlg
⁡
R
⁡
Base
R
∈
LMod
7
1
6
eqeltrid
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod