Metamath Proof Explorer


Theorem rlmlvec

Description: The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion rlmlvec R DivRing ringLMod R LVec

Proof

Step Hyp Ref Expression
1 drngring R DivRing R Ring
2 rlmlmod R Ring ringLMod R LMod
3 1 2 syl R DivRing ringLMod R LMod
4 rlmsca R DivRing R = Scalar ringLMod R
5 id R DivRing R DivRing
6 4 5 eqeltrrd R DivRing Scalar ringLMod R DivRing
7 eqid Scalar ringLMod R = Scalar ringLMod R
8 7 islvec ringLMod R LVec ringLMod R LMod Scalar ringLMod R DivRing
9 3 6 8 sylanbrc R DivRing ringLMod R LVec