Metamath Proof Explorer


Theorem rlmnlm

Description: The ring module over a normed ring is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion rlmnlm R NrmRing ringLMod R NrmMod

Proof

Step Hyp Ref Expression
1 nrgring R NrmRing R Ring
2 eqid Base R = Base R
3 2 subrgid R Ring Base R SubRing R
4 1 3 syl R NrmRing Base R SubRing R
5 rlmval ringLMod R = subringAlg R Base R
6 5 sranlm R NrmRing Base R SubRing R ringLMod R NrmMod
7 4 6 mpdan R NrmRing ringLMod R NrmMod