Metamath Proof Explorer


Theorem rlmnm

Description: The norm function in the ring module. (Contributed by AV, 9-Oct-2021)

Ref Expression
Assertion rlmnm norm R = norm ringLMod R

Proof

Step Hyp Ref Expression
1 rlmbas Base R = Base ringLMod R
2 id Base R = Base ringLMod R Base R = Base ringLMod R
3 rlmplusg + R = + ringLMod R
4 3 a1i Base R = Base ringLMod R + R = + ringLMod R
5 rlmds dist R = dist ringLMod R
6 5 a1i Base R = Base ringLMod R dist R = dist ringLMod R
7 2 4 6 nmpropd Base R = Base ringLMod R norm R = norm ringLMod R
8 1 7 ax-mp norm R = norm ringLMod R