Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
rlmnm
Next ⟩
nrgtrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmnm
Description:
The norm function in the ring module.
(Contributed by
AV
, 9-Oct-2021)
Ref
Expression
Assertion
rlmnm
⊢
norm
⁡
R
=
norm
⁡
ringLMod
⁡
R
Proof
Step
Hyp
Ref
Expression
1
rlmbas
⊢
Base
R
=
Base
ringLMod
⁡
R
2
id
⊢
Base
R
=
Base
ringLMod
⁡
R
→
Base
R
=
Base
ringLMod
⁡
R
3
rlmplusg
⊢
+
R
=
+
ringLMod
⁡
R
4
3
a1i
⊢
Base
R
=
Base
ringLMod
⁡
R
→
+
R
=
+
ringLMod
⁡
R
5
rlmds
⊢
dist
⁡
R
=
dist
⁡
ringLMod
⁡
R
6
5
a1i
⊢
Base
R
=
Base
ringLMod
⁡
R
→
dist
⁡
R
=
dist
⁡
ringLMod
⁡
R
7
2
4
6
nmpropd
⊢
Base
R
=
Base
ringLMod
⁡
R
→
norm
⁡
R
=
norm
⁡
ringLMod
⁡
R
8
1
7
ax-mp
⊢
norm
⁡
R
=
norm
⁡
ringLMod
⁡
R