Metamath Proof Explorer


Theorem rlmnvc

Description: The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion rlmnvc R NrmRing R DivRing ringLMod R NrmVec

Proof

Step Hyp Ref Expression
1 rlmnlm R NrmRing ringLMod R NrmMod
2 rlmlvec R DivRing ringLMod R LVec
3 isnvc ringLMod R NrmVec ringLMod R NrmMod ringLMod R LVec
4 3 biimpri ringLMod R NrmMod ringLMod R LVec ringLMod R NrmVec
5 1 2 4 syl2an R NrmRing R DivRing ringLMod R NrmVec