Metamath Proof Explorer


Theorem rlmplusg

Description: Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion rlmplusg + R = + ringLMod R

Proof

Step Hyp Ref Expression
1 rlmval ringLMod R = subringAlg R Base R
2 1 a1i ringLMod R = subringAlg R Base R
3 ssidd Base R Base R
4 2 3 sraaddg + R = + ringLMod R
5 4 mptru + R = + ringLMod R