Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
rlmplusg
Next ⟩
rlm0
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmplusg
Description:
Vector addition in the ring module.
(Contributed by
Stefan O'Rear
, 31-Mar-2015)
Ref
Expression
Assertion
rlmplusg
⊢
+
R
=
+
ringLMod
⁡
R
Proof
Step
Hyp
Ref
Expression
1
rlmval
⊢
ringLMod
⁡
R
=
subringAlg
⁡
R
⁡
Base
R
2
1
a1i
⊢
⊤
→
ringLMod
⁡
R
=
subringAlg
⁡
R
⁡
Base
R
3
ssidd
⊢
⊤
→
Base
R
⊆
Base
R
4
2
3
sraaddg
⊢
⊤
→
+
R
=
+
ringLMod
⁡
R
5
4
mptru
⊢
+
R
=
+
ringLMod
⁡
R