Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
rlmsca
Next ⟩
rlmsca2
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmsca
Description:
Scalars in the ring module.
(Contributed by
Stefan O'Rear
, 6-Dec-2014)
Ref
Expression
Assertion
rlmsca
⊢
R
∈
X
→
R
=
Scalar
⁡
ringLMod
⁡
R
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
R
=
Base
R
2
1
ressid
⊢
R
∈
X
→
R
↾
𝑠
Base
R
=
R
3
rlmval
⊢
ringLMod
⁡
R
=
subringAlg
⁡
R
⁡
Base
R
4
3
a1i
⊢
R
∈
X
→
ringLMod
⁡
R
=
subringAlg
⁡
R
⁡
Base
R
5
ssidd
⊢
R
∈
X
→
Base
R
⊆
Base
R
6
4
5
srasca
⊢
R
∈
X
→
R
↾
𝑠
Base
R
=
Scalar
⁡
ringLMod
⁡
R
7
2
6
eqtr3d
⊢
R
∈
X
→
R
=
Scalar
⁡
ringLMod
⁡
R