Metamath Proof Explorer


Theorem rlmsca

Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmsca R X R = Scalar ringLMod R

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 1 ressid R X R 𝑠 Base R = R
3 rlmval ringLMod R = subringAlg R Base R
4 3 a1i R X ringLMod R = subringAlg R Base R
5 ssidd R X Base R Base R
6 4 5 srasca R X R 𝑠 Base R = Scalar ringLMod R
7 2 6 eqtr3d R X R = Scalar ringLMod R