Metamath Proof Explorer


Theorem rlmsub

Description: Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion rlmsub - R = - ringLMod R

Proof

Step Hyp Ref Expression
1 rlmbas Base R = Base ringLMod R
2 1 a1i Base R = Base ringLMod R
3 rlmplusg + R = + ringLMod R
4 3 a1i + R = + ringLMod R
5 2 4 grpsubpropd - R = - ringLMod R
6 5 mptru - R = - ringLMod R