Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
rlmval
Next ⟩
lidlval
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmval
Description:
Value of the ring module.
(Contributed by
Stefan O'Rear
, 31-Mar-2015)
Ref
Expression
Assertion
rlmval
⊢
ringLMod
⁡
W
=
subringAlg
⁡
W
⁡
Base
W
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
a
=
W
→
subringAlg
⁡
a
=
subringAlg
⁡
W
2
fveq2
⊢
a
=
W
→
Base
a
=
Base
W
3
1
2
fveq12d
⊢
a
=
W
→
subringAlg
⁡
a
⁡
Base
a
=
subringAlg
⁡
W
⁡
Base
W
4
df-rgmod
⊢
ringLMod
=
a
∈
V
⟼
subringAlg
⁡
a
⁡
Base
a
5
fvex
⊢
subringAlg
⁡
W
⁡
Base
W
∈
V
6
3
4
5
fvmpt
⊢
W
∈
V
→
ringLMod
⁡
W
=
subringAlg
⁡
W
⁡
Base
W
7
0fv
⊢
∅
⁡
Base
W
=
∅
8
7
eqcomi
⊢
∅
=
∅
⁡
Base
W
9
fvprc
⊢
¬
W
∈
V
→
ringLMod
⁡
W
=
∅
10
fvprc
⊢
¬
W
∈
V
→
subringAlg
⁡
W
=
∅
11
10
fveq1d
⊢
¬
W
∈
V
→
subringAlg
⁡
W
⁡
Base
W
=
∅
⁡
Base
W
12
8
9
11
3eqtr4a
⊢
¬
W
∈
V
→
ringLMod
⁡
W
=
subringAlg
⁡
W
⁡
Base
W
13
6
12
pm2.61i
⊢
ringLMod
⁡
W
=
subringAlg
⁡
W
⁡
Base
W