Metamath Proof Explorer


Theorem rlmval

Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion rlmval ringLMod W = subringAlg W Base W

Proof

Step Hyp Ref Expression
1 fveq2 a = W subringAlg a = subringAlg W
2 fveq2 a = W Base a = Base W
3 1 2 fveq12d a = W subringAlg a Base a = subringAlg W Base W
4 df-rgmod ringLMod = a V subringAlg a Base a
5 fvex subringAlg W Base W V
6 3 4 5 fvmpt W V ringLMod W = subringAlg W Base W
7 0fv Base W =
8 7 eqcomi = Base W
9 fvprc ¬ W V ringLMod W =
10 fvprc ¬ W V subringAlg W =
11 10 fveq1d ¬ W V subringAlg W Base W = Base W
12 8 9 11 3eqtr4a ¬ W V ringLMod W = subringAlg W Base W
13 6 12 pm2.61i ringLMod W = subringAlg W Base W