Metamath Proof Explorer


Theorem rlmval2

Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion rlmval2 W X ringLMod W = W sSet Scalar ndx W sSet ndx W sSet 𝑖 ndx W

Proof

Step Hyp Ref Expression
1 rlmval ringLMod W = subringAlg W Base W
2 1 a1i W X ringLMod W = subringAlg W Base W
3 ssid Base W Base W
4 sraval W X Base W Base W subringAlg W Base W = W sSet Scalar ndx W 𝑠 Base W sSet ndx W sSet 𝑖 ndx W
5 3 4 mpan2 W X subringAlg W Base W = W sSet Scalar ndx W 𝑠 Base W sSet ndx W sSet 𝑖 ndx W
6 eqid Base W = Base W
7 6 ressid W X W 𝑠 Base W = W
8 7 opeq2d W X Scalar ndx W 𝑠 Base W = Scalar ndx W
9 8 oveq2d W X W sSet Scalar ndx W 𝑠 Base W = W sSet Scalar ndx W
10 9 oveq1d W X W sSet Scalar ndx W 𝑠 Base W sSet ndx W = W sSet Scalar ndx W sSet ndx W
11 10 oveq1d W X W sSet Scalar ndx W 𝑠 Base W sSet ndx W sSet 𝑖 ndx W = W sSet Scalar ndx W sSet ndx W sSet 𝑖 ndx W
12 2 5 11 3eqtrd W X ringLMod W = W sSet Scalar ndx W sSet ndx W sSet 𝑖 ndx W