Metamath Proof Explorer


Theorem rlmvneg

Description: Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rlmvneg inv g R = inv g ringLMod R

Proof

Step Hyp Ref Expression
1 eqidd Base R = Base R
2 rlmbas Base R = Base ringLMod R
3 2 a1i Base R = Base ringLMod R
4 rlmplusg + R = + ringLMod R
5 4 a1i x Base R y Base R + R = + ringLMod R
6 5 oveqd x Base R y Base R x + R y = x + ringLMod R y
7 1 3 6 grpinvpropd inv g R = inv g ringLMod R
8 7 mptru inv g R = inv g ringLMod R