Metamath Proof Explorer


Theorem rloc0g

Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rloc0g.1 0 ˙ = 0 R
rloc0g.2 1 ˙ = 1 R
rloc0g.3 No typesetting found for |- L = ( R RLocal S ) with typecode |-
rloc0g.4 No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
rloc0g.5 φ R CRing
rloc0g.6 φ S SubMnd mulGrp R
rloc0g.o O = 0 ˙ 1 ˙ ˙
Assertion rloc0g φ O = 0 L

Proof

Step Hyp Ref Expression
1 rloc0g.1 0 ˙ = 0 R
2 rloc0g.2 1 ˙ = 1 R
3 rloc0g.3 Could not format L = ( R RLocal S ) : No typesetting found for |- L = ( R RLocal S ) with typecode |-
4 rloc0g.4 Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
5 rloc0g.5 φ R CRing
6 rloc0g.6 φ S SubMnd mulGrp R
7 rloc0g.o O = 0 ˙ 1 ˙ ˙
8 eqid Base R = Base R
9 eqid R = R
10 eqid + R = + R
11 8 9 10 3 4 5 6 rloccring φ L CRing
12 11 crnggrpd φ L Grp
13 5 crnggrpd φ R Grp
14 8 1 grpidcl R Grp 0 ˙ Base R
15 13 14 syl φ 0 ˙ Base R
16 eqid mulGrp R = mulGrp R
17 16 2 ringidval 1 ˙ = 0 mulGrp R
18 17 subm0cl S SubMnd mulGrp R 1 ˙ S
19 6 18 syl φ 1 ˙ S
20 15 19 opelxpd φ 0 ˙ 1 ˙ Base R × S
21 4 ovexi ˙ V
22 21 ecelqsi 0 ˙ 1 ˙ Base R × S 0 ˙ 1 ˙ ˙ Base R × S / ˙
23 20 22 syl φ 0 ˙ 1 ˙ ˙ Base R × S / ˙
24 eqid - R = - R
25 eqid Base R × S = Base R × S
26 16 8 mgpbas Base R = Base mulGrp R
27 26 submss S SubMnd mulGrp R S Base R
28 6 27 syl φ S Base R
29 8 1 9 24 25 3 4 5 28 rlocbas φ Base R × S / ˙ = Base L
30 23 29 eleqtrd φ 0 ˙ 1 ˙ ˙ Base L
31 eqid + L = + L
32 8 9 10 3 4 5 6 15 15 19 19 31 rlocaddval φ 0 ˙ 1 ˙ ˙ + L 0 ˙ 1 ˙ ˙ = 0 ˙ R 1 ˙ + R 0 ˙ R 1 ˙ 1 ˙ R 1 ˙ ˙
33 5 crngringd φ R Ring
34 8 9 2 33 15 ringridmd φ 0 ˙ R 1 ˙ = 0 ˙
35 34 34 oveq12d φ 0 ˙ R 1 ˙ + R 0 ˙ R 1 ˙ = 0 ˙ + R 0 ˙
36 8 10 1 13 15 grplidd φ 0 ˙ + R 0 ˙ = 0 ˙
37 35 36 eqtrd φ 0 ˙ R 1 ˙ + R 0 ˙ R 1 ˙ = 0 ˙
38 28 19 sseldd φ 1 ˙ Base R
39 8 9 2 33 38 ringlidmd φ 1 ˙ R 1 ˙ = 1 ˙
40 37 39 opeq12d φ 0 ˙ R 1 ˙ + R 0 ˙ R 1 ˙ 1 ˙ R 1 ˙ = 0 ˙ 1 ˙
41 40 eceq1d φ 0 ˙ R 1 ˙ + R 0 ˙ R 1 ˙ 1 ˙ R 1 ˙ ˙ = 0 ˙ 1 ˙ ˙
42 32 41 eqtrd φ 0 ˙ 1 ˙ ˙ + L 0 ˙ 1 ˙ ˙ = 0 ˙ 1 ˙ ˙
43 eqid Base L = Base L
44 eqid 0 L = 0 L
45 43 31 44 isgrpid2 L Grp 0 ˙ 1 ˙ ˙ Base L 0 ˙ 1 ˙ ˙ + L 0 ˙ 1 ˙ ˙ = 0 ˙ 1 ˙ ˙ 0 L = 0 ˙ 1 ˙ ˙
46 45 biimpa L Grp 0 ˙ 1 ˙ ˙ Base L 0 ˙ 1 ˙ ˙ + L 0 ˙ 1 ˙ ˙ = 0 ˙ 1 ˙ ˙ 0 L = 0 ˙ 1 ˙ ˙
47 12 30 42 46 syl12anc φ 0 L = 0 ˙ 1 ˙ ˙
48 7 47 eqtr4id φ O = 0 L