Metamath Proof Explorer


Theorem rloc1r

Description: The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rloc0g.1 0 ˙ = 0 R
rloc0g.2 1 ˙ = 1 R
rloc0g.3 No typesetting found for |- L = ( R RLocal S ) with typecode |-
rloc0g.4 No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
rloc0g.5 φ R CRing
rloc0g.6 φ S SubMnd mulGrp R
rloc1r.i I = 1 ˙ 1 ˙ ˙
Assertion rloc1r φ I = 1 L

Proof

Step Hyp Ref Expression
1 rloc0g.1 0 ˙ = 0 R
2 rloc0g.2 1 ˙ = 1 R
3 rloc0g.3 Could not format L = ( R RLocal S ) : No typesetting found for |- L = ( R RLocal S ) with typecode |-
4 rloc0g.4 Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
5 rloc0g.5 φ R CRing
6 rloc0g.6 φ S SubMnd mulGrp R
7 rloc1r.i I = 1 ˙ 1 ˙ ˙
8 eqid Base R = Base R
9 eqid R = R
10 eqid + R = + R
11 8 9 10 3 4 5 6 rloccring φ L CRing
12 11 crngringd φ L Ring
13 eqid mulGrp R = mulGrp R
14 13 8 mgpbas Base R = Base mulGrp R
15 14 submss S SubMnd mulGrp R S Base R
16 6 15 syl φ S Base R
17 13 2 ringidval 1 ˙ = 0 mulGrp R
18 17 subm0cl S SubMnd mulGrp R 1 ˙ S
19 6 18 syl φ 1 ˙ S
20 16 19 sseldd φ 1 ˙ Base R
21 20 19 opelxpd φ 1 ˙ 1 ˙ Base R × S
22 4 ovexi ˙ V
23 22 ecelqsi 1 ˙ 1 ˙ Base R × S 1 ˙ 1 ˙ ˙ Base R × S / ˙
24 21 23 syl φ 1 ˙ 1 ˙ ˙ Base R × S / ˙
25 eqid - R = - R
26 eqid Base R × S = Base R × S
27 8 1 9 25 26 3 4 5 16 rlocbas φ Base R × S / ˙ = Base L
28 24 27 eleqtrd φ 1 ˙ 1 ˙ ˙ Base L
29 5 ad4antr φ x Base L a Base R b S x = a b ˙ R CRing
30 6 ad4antr φ x Base L a Base R b S x = a b ˙ S SubMnd mulGrp R
31 20 ad4antr φ x Base L a Base R b S x = a b ˙ 1 ˙ Base R
32 simpllr φ x Base L a Base R b S x = a b ˙ a Base R
33 30 18 syl φ x Base L a Base R b S x = a b ˙ 1 ˙ S
34 simplr φ x Base L a Base R b S x = a b ˙ b S
35 eqid L = L
36 8 9 10 3 4 29 30 31 32 33 34 35 rlocmulval φ x Base L a Base R b S x = a b ˙ 1 ˙ 1 ˙ ˙ L a b ˙ = 1 ˙ R a 1 ˙ R b ˙
37 29 crngringd φ x Base L a Base R b S x = a b ˙ R Ring
38 8 9 2 37 32 ringlidmd φ x Base L a Base R b S x = a b ˙ 1 ˙ R a = a
39 30 15 syl φ x Base L a Base R b S x = a b ˙ S Base R
40 39 34 sseldd φ x Base L a Base R b S x = a b ˙ b Base R
41 8 9 2 37 40 ringlidmd φ x Base L a Base R b S x = a b ˙ 1 ˙ R b = b
42 38 41 opeq12d φ x Base L a Base R b S x = a b ˙ 1 ˙ R a 1 ˙ R b = a b
43 42 eceq1d φ x Base L a Base R b S x = a b ˙ 1 ˙ R a 1 ˙ R b ˙ = a b ˙
44 36 43 eqtrd φ x Base L a Base R b S x = a b ˙ 1 ˙ 1 ˙ ˙ L a b ˙ = a b ˙
45 simpr φ x Base L a Base R b S x = a b ˙ x = a b ˙
46 45 oveq2d φ x Base L a Base R b S x = a b ˙ 1 ˙ 1 ˙ ˙ L x = 1 ˙ 1 ˙ ˙ L a b ˙
47 44 46 45 3eqtr4d φ x Base L a Base R b S x = a b ˙ 1 ˙ 1 ˙ ˙ L x = x
48 27 eqcomd φ Base L = Base R × S / ˙
49 48 eleq2d φ x Base L x Base R × S / ˙
50 49 biimpa φ x Base L x Base R × S / ˙
51 50 elrlocbasi φ x Base L a Base R b S x = a b ˙
52 47 51 r19.29vva φ x Base L 1 ˙ 1 ˙ ˙ L x = x
53 8 9 10 3 4 29 30 32 31 34 33 35 rlocmulval φ x Base L a Base R b S x = a b ˙ a b ˙ L 1 ˙ 1 ˙ ˙ = a R 1 ˙ b R 1 ˙ ˙
54 8 9 2 37 32 ringridmd φ x Base L a Base R b S x = a b ˙ a R 1 ˙ = a
55 8 9 2 37 40 ringridmd φ x Base L a Base R b S x = a b ˙ b R 1 ˙ = b
56 54 55 opeq12d φ x Base L a Base R b S x = a b ˙ a R 1 ˙ b R 1 ˙ = a b
57 56 eceq1d φ x Base L a Base R b S x = a b ˙ a R 1 ˙ b R 1 ˙ ˙ = a b ˙
58 53 57 eqtrd φ x Base L a Base R b S x = a b ˙ a b ˙ L 1 ˙ 1 ˙ ˙ = a b ˙
59 45 oveq1d φ x Base L a Base R b S x = a b ˙ x L 1 ˙ 1 ˙ ˙ = a b ˙ L 1 ˙ 1 ˙ ˙
60 58 59 45 3eqtr4d φ x Base L a Base R b S x = a b ˙ x L 1 ˙ 1 ˙ ˙ = x
61 60 51 r19.29vva φ x Base L x L 1 ˙ 1 ˙ ˙ = x
62 52 61 jca φ x Base L 1 ˙ 1 ˙ ˙ L x = x x L 1 ˙ 1 ˙ ˙ = x
63 62 ralrimiva φ x Base L 1 ˙ 1 ˙ ˙ L x = x x L 1 ˙ 1 ˙ ˙ = x
64 eqid Base L = Base L
65 eqid 1 L = 1 L
66 64 35 65 isringid L Ring 1 ˙ 1 ˙ ˙ Base L x Base L 1 ˙ 1 ˙ ˙ L x = x x L 1 ˙ 1 ˙ ˙ = x 1 L = 1 ˙ 1 ˙ ˙
67 66 biimpa L Ring 1 ˙ 1 ˙ ˙ Base L x Base L 1 ˙ 1 ˙ ˙ L x = x x L 1 ˙ 1 ˙ ˙ = x 1 L = 1 ˙ 1 ˙ ˙
68 12 28 63 67 syl12anc φ 1 L = 1 ˙ 1 ˙ ˙
69 7 68 eqtr4id φ I = 1 L