Step |
Hyp |
Ref |
Expression |
1 |
|
rlocbas.b |
|
2 |
|
rlocbas.1 |
|
3 |
|
rlocbas.2 |
|
4 |
|
rlocbas.3 |
|
5 |
|
rlocbas.w |
|
6 |
|
rlocbas.l |
Could not format L = ( R RLocal S ) : No typesetting found for |- L = ( R RLocal S ) with typecode |- |
7 |
|
rlocbas.4 |
Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |- |
8 |
|
rlocbas.r |
|
9 |
|
rlocbas.s |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9
|
rlocval |
Could not format ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) with typecode |- |
23 |
6 22
|
eqtrid |
|
24 |
|
eqidd |
|
25 |
|
eqid |
|
26 |
25
|
imasvalstr |
|
27 |
|
baseid |
|
28 |
|
snsstp1 |
|
29 |
|
ssun1 |
|
30 |
|
ssun1 |
|
31 |
29 30
|
sstri |
|
32 |
28 31
|
sstri |
|
33 |
1
|
fvexi |
|
34 |
33
|
a1i |
|
35 |
34 9
|
ssexd |
|
36 |
34 35
|
xpexd |
|
37 |
5 36
|
eqeltrid |
|
38 |
|
eqid |
|
39 |
24 26 27 32 37 38
|
strfv3 |
|
40 |
39
|
eqcomd |
|
41 |
7
|
ovexi |
|
42 |
41
|
a1i |
|
43 |
|
tpex |
|
44 |
|
tpex |
|
45 |
43 44
|
unex |
|
46 |
|
tpex |
|
47 |
45 46
|
unex |
|
48 |
47
|
a1i |
|
49 |
23 40 42 48
|
qusbas |
|