Metamath Proof Explorer


Theorem rlocbas

Description: The base set of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocbas.b B = Base R
rlocbas.1 0 ˙ = 0 R
rlocbas.2 · ˙ = R
rlocbas.3 - ˙ = - R
rlocbas.w W = B × S
rlocbas.l No typesetting found for |- L = ( R RLocal S ) with typecode |-
rlocbas.4 No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
rlocbas.r φ R V
rlocbas.s φ S B
Assertion rlocbas φ W / ˙ = Base L

Proof

Step Hyp Ref Expression
1 rlocbas.b B = Base R
2 rlocbas.1 0 ˙ = 0 R
3 rlocbas.2 · ˙ = R
4 rlocbas.3 - ˙ = - R
5 rlocbas.w W = B × S
6 rlocbas.l Could not format L = ( R RLocal S ) : No typesetting found for |- L = ( R RLocal S ) with typecode |-
7 rlocbas.4 Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
8 rlocbas.r φ R V
9 rlocbas.s φ S B
10 eqid + R = + R
11 eqid R = R
12 eqid Scalar R = Scalar R
13 eqid Base Scalar R = Base Scalar R
14 eqid R = R
15 eqid TopSet R = TopSet R
16 eqid dist R = dist R
17 eqid a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b = a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b
18 eqid a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b = a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
19 eqid k Base Scalar R , a W k R 1 st a 2 nd a = k Base Scalar R , a W k R 1 st a 2 nd a
20 eqid a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a = a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a
21 eqid a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a = a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
22 1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9 rlocval Could not format ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) with typecode |-
23 6 22 eqtrid φ L = Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a / 𝑠 ˙
24 eqidd φ Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a = Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
25 eqid Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a = Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
26 25 imasvalstr Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a Struct 1 12
27 baseid Base = Slot Base ndx
28 snsstp1 Base ndx W Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
29 ssun1 Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx
30 ssun1 Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
31 29 30 sstri Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
32 28 31 sstri Base ndx W Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
33 1 fvexi B V
34 33 a1i φ B V
35 34 9 ssexd φ S V
36 34 35 xpexd φ B × S V
37 5 36 eqeltrid φ W V
38 eqid Base Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a = Base Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
39 24 26 27 32 37 38 strfv3 φ Base Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a = W
40 39 eqcomd φ W = Base Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a
41 7 ovexi ˙ V
42 41 a1i φ ˙ V
43 tpex Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b V
44 tpex Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx V
45 43 44 unex Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx V
46 tpex TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a V
47 45 46 unex Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a V
48 47 a1i φ Base ndx W + ndx a W , b W 1 st a · ˙ 2 nd b + R 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b ndx a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b Scalar ndx Scalar R ndx k Base Scalar R , a W k R 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet R × t TopSet R 𝑡 S ndx a b | a W b W 1 st a · ˙ 2 nd b R 1 st b · ˙ 2 nd a dist ndx a W , b W 1 st a · ˙ 2 nd b dist R 1 st b · ˙ 2 nd a V
49 23 40 42 48 qusbas φ W / ˙ = Base L