Step |
Hyp |
Ref |
Expression |
1 |
|
rlocaddval.1 |
|
2 |
|
rlocaddval.2 |
|
3 |
|
rlocaddval.3 |
|
4 |
|
rlocaddval.4 |
Could not format L = ( R RLocal S ) : No typesetting found for |- L = ( R RLocal S ) with typecode |- |
5 |
|
rlocaddval.5 |
Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |- |
6 |
|
rlocaddval.r |
|
7 |
|
rlocaddval.s |
|
8 |
|
rlocaddval.6 |
|
9 |
|
rlocaddval.7 |
|
10 |
|
rlocaddval.8 |
|
11 |
|
rlocaddval.9 |
|
12 |
|
rlocmulval.1 |
|
13 |
8 10
|
opelxpd |
|
14 |
9 11
|
opelxpd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
29 1
|
mgpbas |
|
31 |
30
|
submss |
|
32 |
7 31
|
syl |
|
33 |
1 15 2 16 3 17 18 19 20 21 5 22 23 24 25 26 27 28 6 32
|
rlocval |
Could not format ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) with typecode |- |
34 |
4 33
|
eqtrid |
|
35 |
|
eqidd |
|
36 |
|
eqid |
|
37 |
36
|
imasvalstr |
|
38 |
|
baseid |
|
39 |
|
snsstp1 |
|
40 |
|
ssun1 |
|
41 |
|
ssun1 |
|
42 |
40 41
|
sstri |
|
43 |
39 42
|
sstri |
|
44 |
1
|
fvexi |
|
45 |
44
|
a1i |
|
46 |
45 7
|
xpexd |
|
47 |
|
eqid |
|
48 |
35 37 38 43 46 47
|
strfv3 |
|
49 |
48
|
eqcomd |
|
50 |
|
eqid |
|
51 |
1 15 50 2 16 21 5 6 7
|
erler |
|
52 |
|
tpex |
|
53 |
|
tpex |
|
54 |
52 53
|
unex |
|
55 |
|
tpex |
|
56 |
54 55
|
unex |
|
57 |
56
|
a1i |
|
58 |
32
|
ad2antrr |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
ad2antrr |
|
61 |
|
eqidd |
|
62 |
|
eqidd |
|
63 |
6
|
crngringd |
|
64 |
63
|
ad6antr |
|
65 |
|
simplr |
|
66 |
1 5 58 65
|
erlcl1 |
|
67 |
66
|
ad4antr |
|
68 |
|
xp1st |
|
69 |
67 68
|
syl |
|
70 |
|
simpr |
|
71 |
1 5 58 70
|
erlcl1 |
|
72 |
71
|
ad4antr |
|
73 |
|
xp1st |
|
74 |
72 73
|
syl |
|
75 |
1 2 64 69 74
|
ringcld |
|
76 |
1 5 58 65
|
erlcl2 |
|
77 |
76
|
ad4antr |
|
78 |
|
xp1st |
|
79 |
77 78
|
syl |
|
80 |
1 5 58 70
|
erlcl2 |
|
81 |
80
|
ad4antr |
|
82 |
|
xp1st |
|
83 |
81 82
|
syl |
|
84 |
1 2 64 79 83
|
ringcld |
|
85 |
7
|
ad6antr |
|
86 |
|
xp2nd |
|
87 |
67 86
|
syl |
|
88 |
|
xp2nd |
|
89 |
72 88
|
syl |
|
90 |
29 2
|
mgpplusg |
|
91 |
90
|
submcl |
|
92 |
85 87 89 91
|
syl3anc |
|
93 |
|
xp2nd |
|
94 |
77 93
|
syl |
|
95 |
|
xp2nd |
|
96 |
81 95
|
syl |
|
97 |
90
|
submcl |
|
98 |
85 94 96 97
|
syl3anc |
|
99 |
|
simp-4r |
|
100 |
|
simplr |
|
101 |
90
|
submcl |
|
102 |
85 99 100 101
|
syl3anc |
|
103 |
60 102
|
sseldd |
|
104 |
60 98
|
sseldd |
|
105 |
1 2 64 75 104
|
ringcld |
|
106 |
60 92
|
sseldd |
|
107 |
1 2 64 84 106
|
ringcld |
|
108 |
1 2 16 64 103 105 107
|
ringsubdi |
|
109 |
64
|
ringgrpd |
|
110 |
1 2 64 103 105
|
ringcld |
|
111 |
1 2 64 79 74
|
ringcld |
|
112 |
60 87
|
sseldd |
|
113 |
60 96
|
sseldd |
|
114 |
1 2 64 112 113
|
ringcld |
|
115 |
1 2 64 111 114
|
ringcld |
|
116 |
1 2 64 103 115
|
ringcld |
|
117 |
1 2 64 103 107
|
ringcld |
|
118 |
1 3 16
|
grpnpncan |
|
119 |
109 110 116 117 118
|
syl13anc |
|
120 |
6
|
ad2antrr |
|
121 |
120
|
ad2antrr |
|
122 |
121
|
ad2antrr |
|
123 |
29
|
crngmgp |
|
124 |
122 123
|
syl |
|
125 |
60 99
|
sseldd |
|
126 |
60 100
|
sseldd |
|
127 |
60 94
|
sseldd |
|
128 |
30 90 124 125 126 69 74 127 113
|
cmn246135 |
|
129 |
30 90 124 125 126 79 74 112 113
|
cmn246135 |
|
130 |
128 129
|
oveq12d |
|
131 |
1 2 64 74 113
|
ringcld |
|
132 |
1 2 64 126 131
|
ringcld |
|
133 |
1 2 64 69 127
|
ringcld |
|
134 |
1 2 64 125 133
|
ringcld |
|
135 |
1 2 64 79 112
|
ringcld |
|
136 |
1 2 64 125 135
|
ringcld |
|
137 |
1 2 16 64 132 134 136
|
ringsubdi |
|
138 |
1 2 16 64 125 133 135
|
ringsubdi |
|
139 |
|
simpllr |
|
140 |
138 139
|
eqtr3d |
|
141 |
140
|
oveq2d |
|
142 |
1 2 15 64 132
|
ringrzd |
|
143 |
141 142
|
eqtrd |
|
144 |
137 143
|
eqtr3d |
|
145 |
130 144
|
eqtrd |
|
146 |
1 2 122 79 74
|
crngcomd |
|
147 |
146
|
oveq1d |
|
148 |
147
|
oveq2d |
|
149 |
30 90 124 125 126 74 79 112 113
|
cmn145236 |
|
150 |
148 149
|
eqtrd |
|
151 |
1 2 122 83 79
|
crngcomd |
|
152 |
151
|
oveq1d |
|
153 |
152
|
oveq2d |
|
154 |
60 89
|
sseldd |
|
155 |
30 90 124 125 126 83 79 112 154
|
cmn145236 |
|
156 |
153 155
|
eqtr3d |
|
157 |
150 156
|
oveq12d |
|
158 |
1 2 64 83 154
|
ringcld |
|
159 |
1 2 16 64 126 131 158
|
ringsubdi |
|
160 |
|
simpr |
|
161 |
159 160
|
eqtr3d |
|
162 |
161
|
oveq2d |
|
163 |
1 2 64 126 158
|
ringcld |
|
164 |
1 2 16 64 136 132 163
|
ringsubdi |
|
165 |
1 2 15 64 136
|
ringrzd |
|
166 |
162 164 165
|
3eqtr3d |
|
167 |
157 166
|
eqtrd |
|
168 |
145 167
|
oveq12d |
|
169 |
1 15
|
grpidcl |
|
170 |
109 169
|
syl |
|
171 |
1 3 15 109 170
|
grplidd |
|
172 |
168 171
|
eqtrd |
|
173 |
108 119 172
|
3eqtr2d |
|
174 |
1 5 60 15 2 16 61 62 75 84 92 98 102 173
|
erlbrd |
|
175 |
70
|
ad2antrr |
|
176 |
1 5 59 15 2 16 175
|
erldi |
|
177 |
174 176
|
r19.29a |
|
178 |
1 5 58 15 2 16 65
|
erldi |
|
179 |
177 178
|
r19.29a |
|
180 |
|
mulridx |
|
181 |
|
snsstp3 |
|
182 |
181 42
|
sstri |
|
183 |
25
|
mpoexg |
|
184 |
46 46 183
|
syl2anc |
|
185 |
|
eqid |
|
186 |
35 37 180 182 184 185
|
strfv3 |
|
187 |
186
|
ad2antrr |
|
188 |
187
|
oveqd |
|
189 |
|
opex |
|
190 |
189
|
a1i |
|
191 |
|
simpl |
|
192 |
191
|
fveq2d |
|
193 |
|
simpr |
|
194 |
193
|
fveq2d |
|
195 |
192 194
|
oveq12d |
|
196 |
191
|
fveq2d |
|
197 |
193
|
fveq2d |
|
198 |
196 197
|
oveq12d |
|
199 |
195 198
|
opeq12d |
|
200 |
199 25
|
ovmpoga |
|
201 |
66 71 190 200
|
syl3anc |
|
202 |
188 201
|
eqtrd |
|
203 |
187
|
oveqd |
|
204 |
|
opex |
|
205 |
204
|
a1i |
|
206 |
|
simpl |
|
207 |
206
|
fveq2d |
|
208 |
|
simpr |
|
209 |
208
|
fveq2d |
|
210 |
207 209
|
oveq12d |
|
211 |
206
|
fveq2d |
|
212 |
208
|
fveq2d |
|
213 |
211 212
|
oveq12d |
|
214 |
210 213
|
opeq12d |
|
215 |
214 25
|
ovmpoga |
|
216 |
76 80 205 215
|
syl3anc |
|
217 |
203 216
|
eqtrd |
|
218 |
202 217
|
breq12d |
|
219 |
179 218
|
mpbird |
|
220 |
219
|
anasss |
|
221 |
220
|
ex |
|
222 |
186
|
oveqd |
|
223 |
222
|
ad2antrr |
|
224 |
|
simplr |
|
225 |
|
simpr |
|
226 |
204
|
a1i |
|
227 |
224 225 226 215
|
syl3anc |
|
228 |
63
|
ad2antrr |
|
229 |
224 78
|
syl |
|
230 |
225 82
|
syl |
|
231 |
1 2 228 229 230
|
ringcld |
|
232 |
7
|
ad2antrr |
|
233 |
224 93
|
syl |
|
234 |
225 95
|
syl |
|
235 |
232 233 234 97
|
syl3anc |
|
236 |
231 235
|
opelxpd |
|
237 |
227 236
|
eqeltrd |
|
238 |
223 237
|
eqeltrd |
|
239 |
238
|
anasss |
|
240 |
34 49 51 57 221 239 185 12
|
qusmulval |
|
241 |
13 14 240
|
mpd3an23 |
|
242 |
186
|
oveqd |
|
243 |
25
|
a1i |
|
244 |
|
simprl |
|
245 |
244
|
fveq2d |
|
246 |
8
|
adantr |
|
247 |
10
|
adantr |
|
248 |
|
op1stg |
|
249 |
246 247 248
|
syl2anc |
|
250 |
245 249
|
eqtrd |
|
251 |
|
simprr |
|
252 |
251
|
fveq2d |
|
253 |
9
|
adantr |
|
254 |
11
|
adantr |
|
255 |
|
op1stg |
|
256 |
253 254 255
|
syl2anc |
|
257 |
252 256
|
eqtrd |
|
258 |
250 257
|
oveq12d |
|
259 |
244
|
fveq2d |
|
260 |
|
op2ndg |
|
261 |
246 247 260
|
syl2anc |
|
262 |
259 261
|
eqtrd |
|
263 |
251
|
fveq2d |
|
264 |
|
op2ndg |
|
265 |
253 254 264
|
syl2anc |
|
266 |
263 265
|
eqtrd |
|
267 |
262 266
|
oveq12d |
|
268 |
258 267
|
opeq12d |
|
269 |
|
opex |
|
270 |
269
|
a1i |
|
271 |
243 268 13 14 270
|
ovmpod |
|
272 |
242 271
|
eqtrd |
|
273 |
272
|
eceq1d |
|
274 |
241 273
|
eqtrd |
|