Metamath Proof Explorer


Theorem rlocval

Description: Expand the value of the ring localization operation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocval.1 B = Base R
rlocval.2 0 ˙ = 0 R
rlocval.3 · ˙ = R
rlocval.4 - ˙ = - R
rlocval.5 + ˙ = + R
rlocval.6 ˙ = R
rlocval.7 F = Scalar R
rlocval.8 K = Base F
rlocval.9 C = R
rlocval.10 W = B × S
rlocval.11 No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
rlocval.12 J = TopSet R
rlocval.13 D = dist R
rlocval.14 ˙ = a W , b W 1 st a · ˙ 2 nd b + ˙ 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b
rlocval.15 ˙ = a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
rlocval.16 × ˙ = k K , a W k C 1 st a 2 nd a
rlocval.17 No typesetting found for |- .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } with typecode |-
rlocval.18 E = a W , b W 1 st a · ˙ 2 nd b D 1 st b · ˙ 2 nd a
rlocval.19 φ R V
rlocval.20 φ S B
Assertion rlocval Could not format assertion : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rlocval.1 B = Base R
2 rlocval.2 0 ˙ = 0 R
3 rlocval.3 · ˙ = R
4 rlocval.4 - ˙ = - R
5 rlocval.5 + ˙ = + R
6 rlocval.6 ˙ = R
7 rlocval.7 F = Scalar R
8 rlocval.8 K = Base F
9 rlocval.9 C = R
10 rlocval.10 W = B × S
11 rlocval.11 Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
12 rlocval.12 J = TopSet R
13 rlocval.13 D = dist R
14 rlocval.14 ˙ = a W , b W 1 st a · ˙ 2 nd b + ˙ 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b
15 rlocval.15 ˙ = a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
16 rlocval.16 × ˙ = k K , a W k C 1 st a 2 nd a
17 rlocval.17 Could not format .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } : No typesetting found for |- .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } with typecode |-
18 rlocval.18 E = a W , b W 1 st a · ˙ 2 nd b D 1 st b · ˙ 2 nd a
19 rlocval.19 φ R V
20 rlocval.20 φ S B
21 19 elexd φ R V
22 1 fvexi B V
23 22 a1i φ B V
24 23 20 ssexd φ S V
25 ovexd Could not format ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) : No typesetting found for |- ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) with typecode |-
26 fvexd r = R s = S r V
27 fveq2 r = R r = R
28 27 adantr r = R s = S r = R
29 28 3 eqtr4di r = R s = S r = · ˙
30 fvexd r = R s = S x = · ˙ Base r V
31 vex s V
32 31 a1i r = R s = S x = · ˙ s V
33 30 32 xpexd r = R s = S x = · ˙ Base r × s V
34 fveq2 r = R Base r = Base R
35 34 ad2antrr r = R s = S x = · ˙ Base r = Base R
36 35 1 eqtr4di r = R s = S x = · ˙ Base r = B
37 simplr r = R s = S x = · ˙ s = S
38 36 37 xpeq12d r = R s = S x = · ˙ Base r × s = B × S
39 38 10 eqtr4di r = R s = S x = · ˙ Base r × s = W
40 simpr r = R s = S x = · ˙ w = W w = W
41 40 opeq2d r = R s = S x = · ˙ w = W Base ndx w = Base ndx W
42 simplll r = R s = S x = · ˙ w = W r = R
43 42 fveq2d r = R s = S x = · ˙ w = W + r = + R
44 43 5 eqtr4di r = R s = S x = · ˙ w = W + r = + ˙
45 simplr r = R s = S x = · ˙ w = W x = · ˙
46 45 oveqd r = R s = S x = · ˙ w = W 1 st a x 2 nd b = 1 st a · ˙ 2 nd b
47 45 oveqd r = R s = S x = · ˙ w = W 1 st b x 2 nd a = 1 st b · ˙ 2 nd a
48 44 46 47 oveq123d r = R s = S x = · ˙ w = W 1 st a x 2 nd b + r 1 st b x 2 nd a = 1 st a · ˙ 2 nd b + ˙ 1 st b · ˙ 2 nd a
49 45 oveqd r = R s = S x = · ˙ w = W 2 nd a x 2 nd b = 2 nd a · ˙ 2 nd b
50 48 49 opeq12d r = R s = S x = · ˙ w = W 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b = 1 st a · ˙ 2 nd b + ˙ 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b
51 40 40 50 mpoeq123dv r = R s = S x = · ˙ w = W a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b = a W , b W 1 st a · ˙ 2 nd b + ˙ 1 st b · ˙ 2 nd a 2 nd a · ˙ 2 nd b
52 51 14 eqtr4di r = R s = S x = · ˙ w = W a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b = ˙
53 52 opeq2d r = R s = S x = · ˙ w = W + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b = + ndx ˙
54 45 oveqd r = R s = S x = · ˙ w = W 1 st a x 1 st b = 1 st a · ˙ 1 st b
55 54 49 opeq12d r = R s = S x = · ˙ w = W 1 st a x 1 st b 2 nd a x 2 nd b = 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
56 40 40 55 mpoeq123dv r = R s = S x = · ˙ w = W a w , b w 1 st a x 1 st b 2 nd a x 2 nd b = a W , b W 1 st a · ˙ 1 st b 2 nd a · ˙ 2 nd b
57 56 15 eqtr4di r = R s = S x = · ˙ w = W a w , b w 1 st a x 1 st b 2 nd a x 2 nd b = ˙
58 57 opeq2d r = R s = S x = · ˙ w = W ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b = ndx ˙
59 41 53 58 tpeq123d r = R s = S x = · ˙ w = W Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b = Base ndx W + ndx ˙ ndx ˙
60 42 fveq2d r = R s = S x = · ˙ w = W Scalar r = Scalar R
61 60 7 eqtr4di r = R s = S x = · ˙ w = W Scalar r = F
62 61 opeq2d r = R s = S x = · ˙ w = W Scalar ndx Scalar r = Scalar ndx F
63 60 fveq2d r = R s = S x = · ˙ w = W Base Scalar r = Base Scalar R
64 7 fveq2i Base F = Base Scalar R
65 8 64 eqtri K = Base Scalar R
66 63 65 eqtr4di r = R s = S x = · ˙ w = W Base Scalar r = K
67 42 fveq2d r = R s = S x = · ˙ w = W r = R
68 67 9 eqtr4di r = R s = S x = · ˙ w = W r = C
69 68 oveqd r = R s = S x = · ˙ w = W k r 1 st a = k C 1 st a
70 69 opeq1d r = R s = S x = · ˙ w = W k r 1 st a 2 nd a = k C 1 st a 2 nd a
71 66 40 70 mpoeq123dv r = R s = S x = · ˙ w = W k Base Scalar r , a w k r 1 st a 2 nd a = k K , a W k C 1 st a 2 nd a
72 71 16 eqtr4di r = R s = S x = · ˙ w = W k Base Scalar r , a w k r 1 st a 2 nd a = × ˙
73 72 opeq2d r = R s = S x = · ˙ w = W ndx k Base Scalar r , a w k r 1 st a 2 nd a = ndx × ˙
74 eqidd r = R s = S x = · ˙ w = W 𝑖 ndx = 𝑖 ndx
75 62 73 74 tpeq123d r = R s = S x = · ˙ w = W Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx = Scalar ndx F ndx × ˙ 𝑖 ndx
76 59 75 uneq12d r = R s = S x = · ˙ w = W Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx = Base ndx W + ndx ˙ ndx ˙ Scalar ndx F ndx × ˙ 𝑖 ndx
77 42 fveq2d r = R s = S x = · ˙ w = W TopSet r = TopSet R
78 77 12 eqtr4di r = R s = S x = · ˙ w = W TopSet r = J
79 37 adantr r = R s = S x = · ˙ w = W s = S
80 78 79 oveq12d r = R s = S x = · ˙ w = W TopSet r 𝑡 s = J 𝑡 S
81 78 80 oveq12d r = R s = S x = · ˙ w = W TopSet r × t TopSet r 𝑡 s = J × t J 𝑡 S
82 81 opeq2d r = R s = S x = · ˙ w = W TopSet ndx TopSet r × t TopSet r 𝑡 s = TopSet ndx J × t J 𝑡 S
83 40 eleq2d r = R s = S x = · ˙ w = W a w a W
84 40 eleq2d r = R s = S x = · ˙ w = W b w b W
85 83 84 anbi12d r = R s = S x = · ˙ w = W a w b w a W b W
86 42 fveq2d r = R s = S x = · ˙ w = W r = R
87 86 6 eqtr4di r = R s = S x = · ˙ w = W r = ˙
88 46 87 47 breq123d r = R s = S x = · ˙ w = W 1 st a x 2 nd b r 1 st b x 2 nd a 1 st a · ˙ 2 nd b ˙ 1 st b · ˙ 2 nd a
89 85 88 anbi12d r = R s = S x = · ˙ w = W a w b w 1 st a x 2 nd b r 1 st b x 2 nd a a W b W 1 st a · ˙ 2 nd b ˙ 1 st b · ˙ 2 nd a
90 89 opabbidv r = R s = S x = · ˙ w = W a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a = a b | a W b W 1 st a · ˙ 2 nd b ˙ 1 st b · ˙ 2 nd a
91 90 17 eqtr4di Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) with typecode |-
92 91 opeq2d Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) with typecode |-
93 42 fveq2d r = R s = S x = · ˙ w = W dist r = dist R
94 93 13 eqtr4di r = R s = S x = · ˙ w = W dist r = D
95 94 46 47 oveq123d r = R s = S x = · ˙ w = W 1 st a x 2 nd b dist r 1 st b x 2 nd a = 1 st a · ˙ 2 nd b D 1 st b · ˙ 2 nd a
96 40 40 95 mpoeq123dv r = R s = S x = · ˙ w = W a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a = a W , b W 1 st a · ˙ 2 nd b D 1 st b · ˙ 2 nd a
97 96 18 eqtr4di r = R s = S x = · ˙ w = W a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a = E
98 97 opeq2d r = R s = S x = · ˙ w = W dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a = dist ndx E
99 82 92 98 tpeq123d Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) with typecode |-
100 76 99 uneq12d Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) with typecode |-
101 42 79 oveq12d Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = ( R ~RL S ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = ( R ~RL S ) ) with typecode |-
102 101 11 eqtr4di Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = .~ ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = .~ ) with typecode |-
103 100 102 oveq12d Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-
104 33 39 103 csbied2 Could not format ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-
105 26 29 104 csbied2 Could not format ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-
106 df-rloc Could not format RLocal = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) ) : No typesetting found for |- RLocal = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) ) with typecode |-
107 105 106 ovmpoga Could not format ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-
108 21 24 25 107 syl3anc Could not format ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |-