Metamath Proof Explorer


Theorem rmo0

Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmo0 * x φ

Proof

Step Hyp Ref Expression
1 rex0 ¬ x φ
2 1 pm2.21i x φ ∃! x φ
3 rmo5 * x φ x φ ∃! x φ
4 2 3 mpbir * x φ