Metamath Proof Explorer


Theorem rmo2

Description: Alternate definition of restricted "at most one". Note that E* x e. A ph is not equivalent to E. y e. A A. x e. A ( ph -> x = y ) (in analogy to reu6 ); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i . (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1 y φ
Assertion rmo2 * x A φ y x A φ x = y

Proof

Step Hyp Ref Expression
1 rmo2.1 y φ
2 df-rmo * x A φ * x x A φ
3 nfv y x A
4 3 1 nfan y x A φ
5 4 mof * x x A φ y x x A φ x = y
6 impexp x A φ x = y x A φ x = y
7 6 albii x x A φ x = y x x A φ x = y
8 df-ral x A φ x = y x x A φ x = y
9 7 8 bitr4i x x A φ x = y x A φ x = y
10 9 exbii y x x A φ x = y y x A φ x = y
11 2 5 10 3bitri * x A φ y x A φ x = y