Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
rmo2i
Next ⟩
rmo3
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmo2i
Description:
Condition implying restricted "at most one".
(Contributed by
NM
, 17-Jun-2017)
Ref
Expression
Hypothesis
rmo2.1
⊢
Ⅎ
y
φ
Assertion
rmo2i
⊢
∃
y
∈
A
∀
x
∈
A
φ
→
x
=
y
→
∃
*
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
rmo2.1
⊢
Ⅎ
y
φ
2
rexex
⊢
∃
y
∈
A
∀
x
∈
A
φ
→
x
=
y
→
∃
y
∀
x
∈
A
φ
→
x
=
y
3
1
rmo2
⊢
∃
*
x
∈
A
φ
↔
∃
y
∀
x
∈
A
φ
→
x
=
y
4
2
3
sylibr
⊢
∃
y
∈
A
∀
x
∈
A
φ
→
x
=
y
→
∃
*
x
∈
A
φ