Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rmo4f
Metamath Proof Explorer
Description: Restricted "at most one" using implicit substitution. (Contributed by NM , 24-Oct-2006) (Revised by Thierry Arnoux , 11-Oct-2016) (Revised by Thierry Arnoux , 8-Mar-2017) (Revised by Thierry Arnoux , 8-Oct-2017)
Ref
Expression
Hypotheses
rmo4f.1
⊢ Ⅎ _ x A
rmo4f.2
⊢ Ⅎ _ y A
rmo4f.3
⊢ Ⅎ x ψ
rmo4f.4
⊢ x = y → φ ↔ ψ
Assertion
rmo4f
⊢ ∃ * x ∈ A φ ↔ ∀ x ∈ A ∀ y ∈ A φ ∧ ψ → x = y
Proof
Step
Hyp
Ref
Expression
1
rmo4f.1
⊢ Ⅎ _ x A
2
rmo4f.2
⊢ Ⅎ _ y A
3
rmo4f.3
⊢ Ⅎ x ψ
4
rmo4f.4
⊢ x = y → φ ↔ ψ
5
nfv
⊢ Ⅎ y φ
6
1 2 5
rmo3f
⊢ ∃ * x ∈ A φ ↔ ∀ x ∈ A ∀ y ∈ A φ ∧ y x φ → x = y
7
3 4
sbiev
⊢ y x φ ↔ ψ
8
7
anbi2i
⊢ φ ∧ y x φ ↔ φ ∧ ψ
9
8
imbi1i
⊢ φ ∧ y x φ → x = y ↔ φ ∧ ψ → x = y
10
9
2ralbii
⊢ ∀ x ∈ A ∀ y ∈ A φ ∧ y x φ → x = y ↔ ∀ x ∈ A ∀ y ∈ A φ ∧ ψ → x = y
11
6 10
bitri
⊢ ∃ * x ∈ A φ ↔ ∀ x ∈ A ∀ y ∈ A φ ∧ ψ → x = y