Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
rmo5
Next ⟩
nrexrmo
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmo5
Description:
Restricted "at most one" in term of uniqueness.
(Contributed by
NM
, 16-Jun-2017)
Ref
Expression
Assertion
rmo5
⊢
∃
*
x
∈
A
φ
↔
∃
x
∈
A
φ
→
∃!
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
moeu
⊢
∃
*
x
x
∈
A
∧
φ
↔
∃
x
x
∈
A
∧
φ
→
∃!
x
x
∈
A
∧
φ
2
df-rmo
⊢
∃
*
x
∈
A
φ
↔
∃
*
x
x
∈
A
∧
φ
3
df-rex
⊢
∃
x
∈
A
φ
↔
∃
x
x
∈
A
∧
φ
4
df-reu
⊢
∃!
x
∈
A
φ
↔
∃!
x
x
∈
A
∧
φ
5
3
4
imbi12i
⊢
∃
x
∈
A
φ
→
∃!
x
∈
A
φ
↔
∃
x
x
∈
A
∧
φ
→
∃!
x
x
∈
A
∧
φ
6
1
2
5
3bitr4i
⊢
∃
*
x
∈
A
φ
↔
∃
x
∈
A
φ
→
∃!
x
∈
A
φ