Metamath Proof Explorer


Theorem rmo5

Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion rmo5 * x A φ x A φ ∃! x A φ

Proof

Step Hyp Ref Expression
1 moeu * x x A φ x x A φ ∃! x x A φ
2 df-rmo * x A φ * x x A φ
3 df-rex x A φ x x A φ
4 df-reu ∃! x A φ ∃! x x A φ
5 3 4 imbi12i x A φ ∃! x A φ x x A φ ∃! x x A φ
6 1 2 5 3bitr4i * x A φ x A φ ∃! x A φ