Metamath Proof Explorer


Theorem rmoanid

Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion rmoanid * x A x A φ * x A φ

Proof

Step Hyp Ref Expression
1 ibar x A φ x A φ
2 1 bicomd x A x A φ φ
3 2 rmobiia * x A x A φ * x A φ