Metamath Proof Explorer


Theorem rmoanidOLD

Description: Obsolete version of rmoanid as of 12-Jan-2025. (Contributed by Peter Mazsa, 24-May-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rmoanidOLD * x A x A φ * x A φ

Proof

Step Hyp Ref Expression
1 anabs5 x A x A φ x A φ
2 1 mobii * x x A x A φ * x x A φ
3 df-rmo * x A x A φ * x x A x A φ
4 df-rmo * x A φ * x x A φ
5 2 3 4 3bitr4i * x A x A φ * x A φ