Metamath Proof Explorer


Theorem rmob

Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses rmoi.b x = B φ ψ
rmoi.c x = C φ χ
Assertion rmob * x A φ B A ψ B = C C A χ

Proof

Step Hyp Ref Expression
1 rmoi.b x = B φ ψ
2 rmoi.c x = C φ χ
3 df-rmo * x A φ * x x A φ
4 simprl * x x A φ B A ψ B A
5 eleq1 B = C B A C A
6 4 5 syl5ibcom * x x A φ B A ψ B = C C A
7 simpl C A χ C A
8 7 a1i * x x A φ B A ψ C A χ C A
9 4 anim1i * x x A φ B A ψ C A B A C A
10 simpll * x x A φ B A ψ C A * x x A φ
11 simplr * x x A φ B A ψ C A B A ψ
12 eleq1 x = B x A B A
13 12 1 anbi12d x = B x A φ B A ψ
14 eleq1 x = C x A C A
15 14 2 anbi12d x = C x A φ C A χ
16 13 15 mob B A C A * x x A φ B A ψ B = C C A χ
17 9 10 11 16 syl3anc * x x A φ B A ψ C A B = C C A χ
18 17 ex * x x A φ B A ψ C A B = C C A χ
19 6 8 18 pm5.21ndd * x x A φ B A ψ B = C C A χ
20 3 19 sylanb * x A φ B A ψ B = C C A χ