Metamath Proof Explorer


Theorem rmob2

Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)

Ref Expression
Hypotheses rmoi2.1 x = B ψ χ
rmoi2.2 φ B A
rmoi2.3 φ * x A ψ
rmoi2.4 φ x A
rmoi2.5 φ ψ
Assertion rmob2 φ x = B χ

Proof

Step Hyp Ref Expression
1 rmoi2.1 x = B ψ χ
2 rmoi2.2 φ B A
3 rmoi2.3 φ * x A ψ
4 rmoi2.4 φ x A
5 rmoi2.5 φ ψ
6 df-rmo * x A ψ * x x A ψ
7 3 6 sylib φ * x x A ψ
8 eleq1 x = B x A B A
9 8 1 anbi12d x = B x A ψ B A χ
10 9 mob2 B A * x x A ψ x A ψ x = B B A χ
11 2 7 4 5 10 syl112anc φ x = B B A χ
12 2 11 mpbirand φ x = B χ