Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
rmob2
Next ⟩
rmoi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmob2
Description:
Consequence of "restricted at most one".
(Contributed by
Thierry Arnoux
, 9-Dec-2019)
Ref
Expression
Hypotheses
rmoi2.1
⊢
x
=
B
→
ψ
↔
χ
rmoi2.2
⊢
φ
→
B
∈
A
rmoi2.3
⊢
φ
→
∃
*
x
∈
A
ψ
rmoi2.4
⊢
φ
→
x
∈
A
rmoi2.5
⊢
φ
→
ψ
Assertion
rmob2
⊢
φ
→
x
=
B
↔
χ
Proof
Step
Hyp
Ref
Expression
1
rmoi2.1
⊢
x
=
B
→
ψ
↔
χ
2
rmoi2.2
⊢
φ
→
B
∈
A
3
rmoi2.3
⊢
φ
→
∃
*
x
∈
A
ψ
4
rmoi2.4
⊢
φ
→
x
∈
A
5
rmoi2.5
⊢
φ
→
ψ
6
df-rmo
⊢
∃
*
x
∈
A
ψ
↔
∃
*
x
x
∈
A
∧
ψ
7
3
6
sylib
⊢
φ
→
∃
*
x
x
∈
A
∧
ψ
8
eleq1
⊢
x
=
B
→
x
∈
A
↔
B
∈
A
9
8
1
anbi12d
⊢
x
=
B
→
x
∈
A
∧
ψ
↔
B
∈
A
∧
χ
10
9
mob2
⊢
B
∈
A
∧
∃
*
x
x
∈
A
∧
ψ
∧
x
∈
A
∧
ψ
→
x
=
B
↔
B
∈
A
∧
χ
11
2
7
4
5
10
syl112anc
⊢
φ
→
x
=
B
↔
B
∈
A
∧
χ
12
2
11
mpbirand
⊢
φ
→
x
=
B
↔
χ