Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
rmobidvaOLD
Metamath Proof Explorer
Description: Obsolete version of rmobidv as of 23-Nov-2024. (Contributed by NM , 16-Jun-2017) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
rmobidvaOLD.1
⊢ φ ∧ x ∈ A → ψ ↔ χ
Assertion
rmobidvaOLD
⊢ φ → ∃ * x ∈ A ψ ↔ ∃ * x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
rmobidvaOLD.1
⊢ φ ∧ x ∈ A → ψ ↔ χ
2
nfv
⊢ Ⅎ x φ
3
2 1
rmobida
⊢ φ → ∃ * x ∈ A ψ ↔ ∃ * x ∈ A χ