Metamath Proof Explorer


Theorem rmobii

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobii.1 φ ψ
Assertion rmobii * x A φ * x A ψ

Proof

Step Hyp Ref Expression
1 rmobii.1 φ ψ
2 1 a1i x A φ ψ
3 2 rmobiia * x A φ * x A ψ