Metamath Proof Explorer


Theorem rmobiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobiia.1 x A φ ψ
Assertion rmobiia * x A φ * x A ψ

Proof

Step Hyp Ref Expression
1 rmobiia.1 x A φ ψ
2 1 pm5.32i x A φ x A ψ
3 2 mobii * x x A φ * x x A ψ
4 df-rmo * x A φ * x x A φ
5 df-rmo * x A ψ * x x A ψ
6 3 4 5 3bitr4i * x A φ * x A ψ