Metamath Proof Explorer


Theorem rmoeq1

Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Assertion rmoeq1 A = B * x A φ * x B φ

Proof

Step Hyp Ref Expression
1 eleq2 A = B x A x B
2 1 anbi1d A = B x A φ x B φ
3 2 mobidv A = B * x x A φ * x x B φ
4 df-rmo * x A φ * x x A φ
5 df-rmo * x B φ * x x B φ
6 3 4 5 3bitr4g A = B * x A φ * x B φ