Metamath Proof Explorer


Theorem rmoeq1f

Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypotheses raleq1f.1 _ x A
raleq1f.2 _ x B
Assertion rmoeq1f A = B * x A φ * x B φ

Proof

Step Hyp Ref Expression
1 raleq1f.1 _ x A
2 raleq1f.2 _ x B
3 1 2 nfeq x A = B
4 eleq2 A = B x A x B
5 4 anbi1d A = B x A φ x B φ
6 3 5 mobid A = B * x x A φ * x x B φ
7 df-rmo * x A φ * x x A φ
8 df-rmo * x B φ * x x B φ
9 6 7 8 3bitr4g A = B * x A φ * x B φ