Metamath Proof Explorer


Theorem rmoim

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion rmoim x A φ ψ * x A ψ * x A φ

Proof

Step Hyp Ref Expression
1 df-ral x A φ ψ x x A φ ψ
2 imdistan x A φ ψ x A φ x A ψ
3 2 albii x x A φ ψ x x A φ x A ψ
4 1 3 bitri x A φ ψ x x A φ x A ψ
5 moim x x A φ x A ψ * x x A ψ * x x A φ
6 df-rmo * x A ψ * x x A ψ
7 df-rmo * x A φ * x x A φ
8 5 6 7 3imtr4g x x A φ x A ψ * x A ψ * x A φ
9 4 8 sylbi x A φ ψ * x A ψ * x A φ